導航:首頁 > 經濟學法 > 多元函數在經濟學中的應用例題

多元函數在經濟學中的應用例題

發布時間:2020-12-03 20:43:36

① 一道經濟學高數應用題 多元函數極值 拉格朗日乘數法 題目見圖 已經做了一部分 求接下去的過程 謝謝

② 經濟學研究生數學要考什麼內容

你可以參考研究生入學考試數學三的考試大綱。

[考試科目]
微積分、線性代數、概率論與數理統計

微積分
一、函數、極限、連續
考試內容
函數的概念及表示法函數的有界性、單調性、周期性和奇偶性反函數、復合函數、隱函數、分段函數基本初等函數的性質及圖形初等函數數列極限與函數極限的概念函數的左極限和右極限無窮小和無窮大的概念及關系無窮小的基本性質及階的比較極限四則運算兩個重要極限函數連續與間斷的概念初等函數的連續性閉區間上連續函數的性質

考試要求
1.理解函數的概念,掌握函數的表示法。深入了解函數的有界性、單調性、周期性和奇偶性。
2.理解復合函數、反函數、隱函數和分段函數的概念。
3. 掌握基本初等函數的性質及其圖形,理解初等函數的概念。
4.會建立簡單應用問題中的函數關系式。
5.了解數列極限和函數極限(包括左、右極限)的概念。
6.了解無窮小的概念和基本性質,掌握無窮小的階的比較方法。了解無窮大的概念及其與無窮小的關系。
7.了解極限的性質與極限存在的兩個准則(單調有界數列有極限、夾逼定理),掌握極限四則運演算法則,會應用兩個重要極限。
8.理解函數連續性的概念(含左連續與右連續)。
9,了解連續函數的性質和初等函數的連續性,了解閉區間上連續函數的性質(有界性、最大值與最小值定理和介值定理)及其簡單應用。

二、一元函數微分學
考試內容

導數的概念函數的可導性與連續性之間的關系導數的四則運算基本初等函數的導數復合函數、反函數和隱函數的導數高階導數微分的概念和運演算法則微分中值定理及其應用洛必達(L'HoSpital)法則函數單調性函數的極值函數圖形的凹凸性、拐點及漸近線函數圖形的描繪函數的最大值與最小值

考試要求
1. 理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念)。
2.掌握基本初等函數的導數公式、導數的四則運演算法則及復合函數的求導法則;掌握反函數與隱函數求導法以及對數求導法。
3.了解高階導數的概念,會求二階、三階導數及較簡單函數的N階導數。
4. 了解微分的概念,導數與微分之間的關系,以及一階微分形式的不變性:掌握微分法。
5.理解羅爾(ROl1e)定理、拉格朗日(kgrange)中值定理、柯西(oluchy)中值定理的條件和結論,掌握這三個定理的簡單應用。
6.會用洛必達法則求極限。
7.掌握函數單調性的判別方法及其應用,掌握極值、最大值和最小值的求法(含解較簡單的應用題)。
8.掌握曲線凹凸性和拐點的判別方法,以及曲線的漸近線的求法。
9.掌握函數作圖的基本步驟和方法,會作某些簡單函數的圖形

三、一元函數積分學
考試內容
原函數與不定積分的概念不定積分的基本性質基本積分
公式不定積分的換元積分法和分部積分法定積分的概念和基本性質積分中值定理變上限定積分定義的函數及其導數牛頓一萊布尼茨(Newton一Leibniz)公式定積分的換元積分法和分部積分法廣義積分的概念和計算定積分的應用

考試要求
1.理解原函數與不定積分的概念,掌握不定積分的基本性質和基本積分公式;掌握計算不定積分的換元積分法和分部積分法。
2.了解定積分的概念和基本性質。掌握牛頓一萊布尼茨公式,以及定積分的換元積分法和分部積分法。會求變上限定積分的導數。
3.會利用定積分計算平面圖形的面積和旋轉體的體積,會利用定積分求解一些簡單的經濟應用題。
4.了解廣義積分收斂與發散的概念,掌握計算廣義積分的基本方法,了解廣義積分的收斂與發散的條件。

四、多元函數微積分學
考試內容
多元函數的概念二元函數的幾何意義二元函數的極限與連續性有界閉區域上二元連續函數的性質(最大值和最小值定理)偏導數的概念與計算多元復合函數的求導法隱函數求導法高階偏導數全微分多元函數的極值和條件極值、最大值和最小值二重積分的概念、基本性質和計算無界區域上簡單二重積分的計算

考試要求
1.了解多元函數的概念,了解二元函數的表示法與幾何意義
2.了解二元函數的極限與連續的直觀意義。
3.了解多元函數偏導數與全微分的概念,掌握求復合函數偏導數和全微分的方法,會用隱函數的求導法則。
4.了解多元函數極值和條件極值的概念/掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件。會求二元函數的極值。會用拉格朗日乘數法求條件極值。會求簡單多元函數的最大值和最小值,會求解一些簡單的應用題。
5.了解二重積分的概念與基本性質,掌握二重積分(直角坐標、極坐標)的計算方法。會計算無界區域上的較簡單的二重積分。

五、無窮級數
考試內容
常數項級數收斂與發散的概念收斂級數的和的概念級數的基本性質與收斂的必要條件幾何級數與戶級數的收斂性正項級數收斂性的判別任意項級數的絕對收斂與條件收斂交錯級數萊布尼茨定理冪級數的概念收斂半徑、收斂區問(指開區間)和收斂域冪級數的和函數冪級數在收斂區間內的基本性質簡單冪級數的和函數的求法初等函數的冪級數展開式

考試要求
1.了解級數的收斂與發散、收斂級數的和等概念。
2.掌握級數收斂的必要條件及收斂級數的基本性質。掌握幾何級數及P級數的收斂與發散的條件。掌握正項級數的比較判別法和達朗貝爾(比值)判別法。
3.了解任意項級數絕對收斂與條件收斂的概念,掌握交錯級數的萊布尼茨判別法,掌握絕對收斂與條件收斂的判別方法。
4.會求冪級數的收斂半徑和收斂域。
5.了解冪級數在收斂區問內的基本性質(和函數的連續性、逐項微分和逐項積分),會求一些簡單冪級數的和函數。
6. 掌握(略)等冪級數展開式,並會利用這些展開式將一些簡單函數間接展成冪級數。

六、常微分方程與羨分方程
考試內容
微分方程的概念微分方程的解、通解、初始條件和特解變數i可分離的微分方程齊次方程一階線性方程二階常系數齊次線性方程及簡單的非齊次線性方程差分與差分方程的概念差分方程的通解與特解一階常系數線性差分方程微分方程與差分方程的簡單應用

考試要求
1.了解微分方程的階、通解、初始條件和特解等概念。
2.掌握變數可分離的方程、齊次方程和一階線性方程的求解方法。
3.會解二階常系數齊次線性方程和自由項為多項式、指數函數、正弦函數、餘弦函數,以及它們的和與乘積的二階常系數非齊次線性微分方程。
4.了解差分與差分方程及其通解與特解等概念。
5.掌握一階常系數線性差分方程的求解方法。
6.會應用微分方程和差分方程求解一些簡單的經濟應用問題。

線性代數
一、行列式
考試內容,
行列式的概念和基本性質行列式按行(列)展開定理克萊姆(Crammer)法則

考試要求
1.理解門階行列式的概念。
2.掌握行列式的性質,會應用行列式的性質和行列式按行(列)展開定理計算行列式。
3.會用克萊姆法則解線性方程組。

二、矩陣
考試內容
矩陣的概念單位矩陣、對角矩陣、數量矩陣、三角矩陣、對稱矩陣和正交矩陣矩陣的和數與矩陣的積矩陣與矩陣的積矩陣的轉置逆矩陣的概念和性質矩陣的伴隨矩陣矩陣的初等變換初等矩陣分塊矩陣及其運算矩陣的秩

考試要求
1.理解矩陣的概念,了解幾種特殊矩陣的定義和性質。
2.掌握矩陣的加法、數乘、乘法,以及它們的運演算法則;掌握矩陣轉置的性質;掌握方陣乘積的行列式的性質。
3.理解逆矩陣的概念、掌握逆矩陣的性質。會用伴隨矩陣求矩陣的逆。
4.了解矩陣的初等變換和初等矩陣的概念;理解矩陣的秩的概念,會用初等變換求矩陣的逆和秩。
5.了解分塊矩陣的概念,掌握分塊矩陣的運演算法則。

三、向量
考試內容
向量的概念向量的和數與向量的積向量的線性組合與線性表示向量組線性相關與線性元關的概念、性質和判別法向量組的極大線性元關組向量組的秩

考試要求
1.了解向量的概念,掌握向量的加法和數乘運演算法則。
2.理解向量的線性組合與線性表示、向量組線性相關、線性無關等概念,掌握向量組線性相關、線性無關的有關性質及判別法。
3.理解向量組的極大無關組的概念,掌握求向量組的極大無關組的方法。
4.理解向量組的秩的概念,了解矩陣的秩與其行(列)向量組的秩之間的關系,會求向量組的秩。

四、線性方程組
考試內容
線性方程組的解線性方程組有解和元解的判定齊次線性方程組的基礎解系和通解非齊次線性方程組的解與相應的齊次線性方程組(導出組)的解之間的關系非齊次線住方程組的通解

考試要求
1.理解線性方程組解的概念,掌握線性方程組有解和無解的判定方法。
2.理解齊次線性方程組的基礎解系的概念,掌握齊次線性方程組的基礎解系和通解的求法。
3.掌握非齊次線性方程組的通解的求法,會用其特解及相應的導出組的基礎解系表示非齊次線性方程組的通解。

五、矩陣的特徵值和特徵向量
考試內容
矩陣的特徵值和特徵向量的概念相似矩陣矩陣的相似對角矩陣實對稱矩陣的特徵值和特徵向量

考試要求
1.理解矩陣的特徵值、特徵向量等概念,掌握矩陣特徵值的性質,掌握求矩陣特徵值和特徵向量的方法。
2.理解矩陣相似的概念、掌握相似矩陣的性質,了解矩陣可對角化的充分條件和必要條件,掌握將矩陣化為相似對角矩陣的方法。
3.掌握實對稱矩陣的特徵值和特徵向量的性質。

六、二次型
考試內容
二次型及其矩陣表示合同矩陣二次型的秩慣性定理二次型的標准形和規范形正交變換二次型及其矩陣的正定性

考試要求
1.了解二次型的概念,會用矩陣形式表示二次型。
2.理解二次型的秩的概念,了解二次型的標准形、規范形等概念(了解慣性定理的條件和結論,會甩正交變換和配方法化二次型為標准形。正定二次型、正定矩陣的概念,掌握正定矩陣的性質。

概率論與數理統計
一、隨機事件和概率
考試內容
隨機事件與樣本空間事件的關系事件的運算及性質事件的獨立性完全事件組概率的定義概率的基本性質古典型概率條件概率「「法公式乘法公式全概率公式和貝葉斯(Bayes)公式獨立重復試驗

考試要求
1.了解樣本空間的概念,理解隨機事件的概念,掌握事件間的關系及運算。
2,理解概率、條件概率的概念,掌握概率的基本性質,會計算古典型概率;掌握概率的加法、乘法公式以及全概率公式、貝葉斯公式。
3.理解事件的獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,掌握計算有關事件概率的方法·

二、隨機變數及其概率分布
考試內容
隨機變數及其概率分布隨機變數的分布函數的概念及其性質離散型隨機變數的概率分布連續型隨機變數的概率密度常見隨機變數的概率分布二維隨機變數及其聯合(概率)分布二維離散型隨機變數的聯合概率分布和邊緣分布二維連續型隨機變數的聯合概率密度和邊緣密度隨機變數的獨立性常見二維隨機變數的聯合分布隨機變數函數的概率分布兩個連續型隨機變數之和的概率分布χ2分布t分布F分布分位數的概念

考試要求

1.理解隨機變數及其概率分布的概念;理解分布函數F(x)=P{X≤x}的概念及性質;會計算與隨機變數有關的事件的概率。
2.理解離散型隨機變數及其概率分布的概念,掌握0一1分布、二項分布、超JLnn分布、泊松(POison)分布及其應用。
3.理解連續型隨機變數及其概率密度的概念,掌握概率密度與分布函數之間的關系;掌握均勻分布、指數分布正態分布及其應用
4.理解二維隨機變數的概念,理解二維隨機變數的聯合分布的概念、性質及其兩種基本形式:離散型聯合概率分布和邊緣分布、連續型聯合概率密度和邊緣密度;會利用二維概率分布求有關事件的概率。

5.理解隨機變數的獨立性及不相關性的概念,掌握離散型和連續型隨機變數獨立的條件。
6.掌握二維均勻分布;了解二維正態分布的密度函數,理解其中參數的概率意義
7.掌握根據自變數的概率分布求其較簡單函數的概率分布的基本方法;會求兩個隨機變數之和的概率分布;了解產生χ2 變數、,變數和F變數的典型模式;理解標准正態分布:χ2分布、T分布和F分布的分位數,會查相應的數值表。

三、隨機變數的數字特徵
考試內容
隨機變數的數學期望、方差、標准差以及它們的基本性質隨機變數函數的數學期望切比雪夫(Chebyshev) 不等式兩個隨機變數的協方差及其性質兩個隨機變數的相關系數及其性質

考試要求
1.理解隨機變數數字特徵 (期望、方差、標准差、協方差、相關系數)的概念,並會運用數字特徵的基本性質計算具體分布的數字特徵,掌握常用分布的數字特徵
2.會根據隨機變數1的概率分布求其函數的數學期望Eg(X); 會根據隨機變數調和Y的聯合概率分布求其函數g(x,Y)的數學期望Eg(x,y)。
3.掌握切比雪夫不等式。

四、大數定律和中心極限定理
考試內容
切比雪夫(Chebyhev)大數定律伯努利(Bemoulli)大數定律辛欽(Khinchine)大數定律泊松(Pojhon)定理列莫弗一拉普拉斯定理(二項分布以正態分布為極限分布)列維一林德伯格定理(獨立同分布的中心極限定理)

考試要求
1.了解切比雪夫、伯努利、辛欽大數定律成立的條件及結論,理解其直觀意義。
2.掌握泊松定理的結論和應用條件,並會用泊松分布近似計算二項分布的概率。

3.掌握椽莫弗一拉普拉斯中心極限定理、列維一林德怕格中心極限定理的結論和應用條件,並會用相關定理近似計算有關隨機事件的概率。

五、數理統計的基本概念
考試內容
總體個體簡單隨機樣本統計量經驗分布函數樣本均值、樣本方方差樣本矩

考試要求
理解總體、簡單隨機樣本、統計量、樣本均值與樣本方差的概念;了解經驗分布函數;掌握正態總體的抽樣分布(標准正態分布、χ2分布、F分布、T分布

六、參數估計
考試內容
點估計的概念估計量與估計值矩估計法極大似然估計估計量的評選標准區間估計的概念單個正態總體均值的區間估計單個正態總體方查和標准差的區間估計兩個正態總體的均值差和方差比的區間估計

考試要求
1.理解參數的點估計、估計量與估計值的概念;了解估計量的無偏性、最小方差性(有效性)和相合性(一致性)的概念,並會驗正估計量的無偏性。
2.掌握矩估計法和極大似然估計法、
3.掌握單個正態總體的均值和方差的置信區間的求法·
4.掌握兩個正態總體的均值差和方差比置信區見的求法

七、假設檢驗
考試內容
顯著性檢驗的基本思想、基本步驟和可能產生的兩類錯誤單個和兩個正態總體的均值差和方差的假設檢驗

考試要求
1.理解顯著興建研的基本思想,掌握假設檢驗的基本步驟了解假設檢驗可能產生的兩類錯誤

2.了解單個和兩個正態總體的均值和方差的假設檢驗。

[試卷結構]
(一)內容比例
微積分約50%
線性代數約25%
概率論與數理統計約25%

(二)題型比例
填空題與選擇題約30%
解答題(包括證明題)約70%

③ 考研數學3難不難

數學一:
①高等數學(函數、極限、連續、一元函數微積分學、向量代數與空間解析幾何、多元函數的微積分學、無窮級數、常微分方程);②線性代數(行列式、矩陣、向量、線性方程組、矩陣的特徵值和特徵向量、二次型);③概率論與數理統計(隨機事件和概率、隨機變數及其概率分布、二維隨機變數及其概率分布、隨機變數的數字特徵、大數定律和中心極限定理、數理統計的基本概念、參數估計、假設檢驗)。
數學二:
①高等數學(函數、極限、連續、一元函數微積分學、常微分方程);②線性代數(行列式、矩陣、向量、線性方程組、矩陣的特徵值和特徵向量)。
數學三:
①微積分(函數、極限、連續、一元函數微積分學、多元函數微積分學、無窮級數、常微分方程與差分方程);②線性代數(行列式、矩陣、向量、線性方程組、矩陣的特徵值和特徵向量、二次型);③概率論與數理統計(隨機事件和概率、隨機變數及其概率分布、隨機變數的聯合概率分布、隨機變數的數字特徵、大數定律和中心極限定理、數理統計的基本概念、參數估計、假設檢驗)。
數學(三)適用的招生專業為:
(1)經濟學門類的理論經濟學一級學科中所有的二級學科、專業。
(2)經濟門類的應用經濟學一級學科中的二級學科、專業:統計學、數量經濟學、國民經濟學、區域經濟學、財政學(含稅收學)、金融學(含保險學)、產業經濟學、國際貿易學、勞動經濟學、國防經濟
(3)管理學門類的工商管理一級學科中的二級學科、專業:企業管理(含財務管理、市場營銷、人力資源管理)、技術經濟及管理、會計學、旅遊管理。
(4)管理學門類的農林經濟管理一級學科中所有的二級學科、專業。

三類數學試卷最大的區別在對於知識面的要求上:數學一最廣,數學三其次,數學二最低。

④ 我想知道如何學好數學

1、 有良好的學習興趣
(1)課前預習,對所學知識產生疑問,產生好奇心。
(2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。
(3)思考問題注意歸納,挖掘你學習的潛力。
(4)聽課中注意老師講解時的數學思想,多問為什麼要這樣思考,這樣的方法怎樣是產生的。
(5)把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸於現實生活,如角的概念、至交坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現實才能使對概念的理解切實可靠,在應用概念判斷、推理時會准確。
2、 建立良好的學習數學習慣。
習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。
3、 有意識培養自己的各方面能力
數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想像能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。平時注意觀察,比如,空間想像能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,並在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計「智力課」和「智力問題」比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發展。
其它注意事項
1、注意化歸轉化思想學習。
人們學習過程就是用掌握的知識去理解、解決未知知識。數學學習過程都是用舊知識引出和解決新問題,當新的知識掌握後再利用它去解決更新知識。初中知識是基礎,如果能把新知識用舊知識解答,你就有了化歸轉化思想了。可見,學習就是不斷地化歸轉化,不斷地繼承和發展更新舊知識。
2、學會數學教材的數學思想方法。
數學教材是採用蘊含披露的方式將數學思想溶於數學知識體系中,因此,適時對數學思想作出歸納、概括是十分必要的。概括數學思想一般可分為兩步進行:一是揭示數學思想內容規律,即將數學對象其具有的屬性或關系抽取出來,二是明確數學思想方法知識的聯系,抽取解決全體的框架。實施這兩步的措施可在課堂的聽講和課外的自學中進行。
學數學的幾個建議
1、記數學筆記,特別是對概念理解的不同側面和數學規律,教師為備戰高考而加的課外知識。
2、建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。
3、記憶數學規律和數學小結論。
4、與同學建立好關系,爭做「小老師」,形成數學學習「互助組」。
5、爭做數學課外題,加大自學力度。
6、反復鞏固,消滅前學後忘。
7、學會總結歸類。可:①從數學思想分類②從解題方法歸類③從知識應用上分類
學習上占第一,每個同學都可以做到。之所以你占不了第一,主要有兩個原因:第一、生活方式、學習方法不正確,第二、沒有堅強的毅力。在這裡面毅力是第一重要的,學習方法是第二重要的。

閱讀全文

與多元函數在經濟學中的應用例題相關的資料

熱點內容
中天高科國際貿易 瀏覽:896
都勻經濟開發區2018 瀏覽:391
輝縣農村信用社招聘 瀏覽:187
鶴壁市靈山文化產業園 瀏覽:753
國際金融和國際金融研究 瀏覽:91
烏魯木齊有農村信用社 瀏覽:897
重慶農村商業銀行ipo保薦機構 瀏覽:628
昆明市十一五中葯材種植產業發展規劃 瀏覽:748
博瑞盛和苑經濟適用房 瀏覽:708
即墨箱包貿易公司 瀏覽:720
江蘇市人均gdp排名2015 瀏覽:279
市場用經濟學一覽 瀏覽:826
中山2017年第一季度gdp 瀏覽:59
中國金融證券有限公司怎麼樣 瀏覽:814
國內金融機構的現狀 瀏覽:255
西方經濟學自考論述題 瀏覽:772
汽車行業產業鏈發展史 瀏覽:488
創新文化產業發展理念 瀏覽:822
國際貿易開題報告英文參考文獻 瀏覽:757
如何理解管理經濟學 瀏覽:22