導航:首頁 > 金融學業 > 互聯網金融的應用領域有哪些

互聯網金融的應用領域有哪些

發布時間:2020-12-15 16:25:08

1. 電子商務給社會經濟帶來的變革有哪些

電子來商務的經濟推動作源用:

電子商務從根本上改變了社會經濟,推動了社會發展和經濟增長。電子商務尤其是B2B業務增長迅速,降低了成本從而提高了經濟效率,促進了市場的根本變化,它將帶來就業增長,也將造成技能需求結構的變化。電子商務的社會經濟影響對政策提出了新要求。電子商務對經濟的推動作用。

(1)互聯網金融的應用領域有哪些擴展閱讀:

特徵與功能:

基本特徵

從電子商務的含義及發展歷程可以看出電子商務具有如下基本特徵:

1、普遍性

電子商務作為一種新型的交易方式,將生產企業、流通企業以及消費者和政府帶入了一個網路經濟、數字化生存的新天地。

2、方便性

在電子商務環境中,人們不再受地域的限制,客戶能以非常簡捷的方式完成過去較為繁雜的商業活動。如通過網路銀行能夠全天候地存取賬戶資金、查詢信息等,同時使企業對客戶的服務質量得以大大提高。在電子商務商業活動中,有大量的人脈資源開發和溝通,從業時間靈活,完成公司要求,有錢有閑。

3、整體性

電子商務能夠規范事務處理的工作流程,將人工操作和電子信息處理集成為一個不可分割的整體,這樣不僅能提高人力和物力的利用率,也可以提高系統運行的嚴密性。

2. 什麼是P2P網路

P2P網路即對等網路/對等計算機網路:是一種在對等者(Peer)之間分配任務和工作負載的分布式應用架構,是對等計算模型在應用層形成的一種組網或網路形式。

「Peer」在英語里有「對等者、夥伴、對端」的意義。因此,從字面上,P2P可以理解為對等計算或對等網路。國內一些媒體將P2P翻譯成「點對點」或者「端對端」。

學術界則統一稱為對等網路(Peer-to-peer networking)或對等計算(Peer-to-peer computing),其可以定義為:網路的參與者共享他們所擁有的一部分硬體資源(處理能力、存儲能力、網路連接能力、列印機等),這些共享資源通過網路提供服務和內容,能被其它對等節點(Peer)直接訪問而無需經過中間實體。

在此網路中的參與者既是資源、服務和內容的提供者(Server),又是資源、服務和內容的獲取者(Client)。

(2)互聯網金融的應用領域有哪些擴展閱讀:

與客戶端/伺服器網路相比,對等網路具有下列優勢:

1、可在網路的中央及邊緣區域共享內容和資源。在客戶端/伺服器網路中,通常只能在網路的中央區域共享內容和資源。

2、由對等方組成的網路易於擴展,而且比單台伺服器更加可靠。單台伺服器會受制於單點故障,或者會在網路使用率偏高時,形為瓶頸。

3、由對等方組成的網路可共享處理器,整合計算資源以執行分布式計算任務,而不只是單純依賴一台計算機,如一台超級計算機。

4、用戶可直接訪問對等計算機上的共享資源。網路中的對等方可直接在本地存儲器上共享文件,而不必在中央伺服器上進行共享。

3. 大數據和人工智慧在互聯網金融領域有哪些應用

大數據從四個方面改變了金融機構傳統的數據運作方式,從而實現了巨大的商業價值。這四個方面(「四個C」)包括:數據質量的兼容性(Compatibility)、數據運用的關聯性(Connectedness)、數據分析的成本(Cost)以及數據價值的轉化(Capitalization)。

大數據在金融業的應用場景正在逐步拓展。在海外,大數據已經在金融行業的風險控制、運營管理、銷售支持和商業模式創新等領域得到了全面嘗試。在國內,金融機構對大數據的應用還基本處於起步階段。數據整合和部門協調等關鍵環節的挑戰仍是阻礙金融機構將數據轉化為價值的主要瓶頸。

數據技術與數據經濟的發展是持續實現大數據價值的支撐。深度應用正在將傳統IT從「後端」不斷推向「前台」,而存量架構與創新模塊的有效整合是傳統金融機構在技術層面所面臨的主要挑戰。此外,數據生態的發展演進有其顯著的社會特徵。作為其中的一員,金融機構在促進數據經濟的發展上任重道遠。

無論是在金融企業還是非金融企業中,數據應用及業務創新的生命周期都包含五個階段:業務定義需求;IT部門獲取並整合數據;數據科學家構建並完善演算法與模型;IT發布新洞察;業務應用並衡量洞察的實際成效。

在今天的大數據環境下,生命周期仍維持原樣,而唯一變化的是「數據科學家」在生命周期中所扮演的角色。大數據將允許其運用各種新的演算法與技術手段,幫助IT不斷挖掘新的關聯洞察,更好地滿足業務需求。

4. 現在最有前途的職業是什麼

現在最有前途的職業是軟體開發人員、物理治療師、護理人員、數據分析師、數字內容專家、信息安全分析師、生物醫學工程師,下面來看看具體介紹。

1、軟體開發人員

隨著互聯網的發展,機器變得越來越智能,對有才華的軟體開發人員的需求將會擴大。尤其是移動應用開發,被認為是2020年及以後最好的職業之一。

(4)互聯網金融的應用領域有哪些擴展閱讀:

選職業注意事項

1、對行業的認識

建議選擇行業之前先做一份行業分析報告,因為選擇職業絕對不是腦子一熱的事,必須非常理智和花點功夫哦,當你認真做完一份行業分析報告之後,你就知道你選擇的這個行業是不是你想要發展方向了。

2、家庭環境因素

比如你的家庭大多數都是公務員,或者你的家庭是做生意的,條件比較好,那就可以按照自己的興趣來選擇職業了,如果你迫於生活壓力,家庭條件不是太好,那就要考慮如何快速地改變自己的經濟狀況了,不管如何影響,都必須選對職業和行業。

3、感情因素

這個也是重要的事情,比如你的女朋友現在在上海,而你在北京,如果你們確定了戀愛關系,在做職業選擇時就必須考慮這些問題。

4、將來生活城市因素

也就是你必須考慮稍長遠一點,你計劃在哪個城市立住腳,並在那裡生活安家,這個因素也非常重要哦。

5. 中國未來有發展的十大行業是什麼

這10大行業包括人工智慧領域,大健康領域,大數據領域,新物流領域,新能源領域,環境保護與改造領域,旅遊領域,智能家居領域,新零售領域,新型保險領域。從發展的角度來看,這10個領域確實是未來發展最有潛力的領域,很多大型企業甚至從現在開始就已經布局了,其實保守的估計,這10個領域最少要在未來30~50年左右發展起到非常重要的作用,所以從某種程度上來講,誰先起步的早誰就能佔領行業的頭幾名。其實我個人覺得人工智慧領域是最有發展潛力的,原因有以下幾點:

3、軍事領域的應用

可以說在未來幾十年的發展當中,人工智慧被應用到軍事領域是必然的,就好像我們經常在科幻片里看到的一樣,機器人無論是在數據處理還是在反應速度上,面都優越於我們普通人,而且在危險區域勘察或大型規模戰爭的時候,機器人如果參與的話,會極大限度的減少人員的傷亡。

6. 創業項目排行榜有哪些

創業項目排行榜有高科技領域、智力服務領域、連鎖加盟領域、開店、技術創業。

4、開店:

大學生開店,一方面可充分利用高校的學生顧客資源;另一方面,由於熟悉同齡人的消費習慣,因此入門較為容易。正由於走「學生路線」,因此在要靠價廉物美來吸引顧客。此外,由於大學生資金有限,不可能選擇熱鬧地段的店面,因此推廣工作尤為重要,需要經常在校園里張貼廣告或和社團聯辦活動,才能廣為人知。

5、技術創業:

大學生畢業後,在學校學習的課程很難應用到實際工作中。畢業後學習一門技術,可以讓大學生很快融入社會。有一技之長進可開店創業,退可打工積累資本。好酒不怕巷子深,所以有一技之長的大學生在開店創業的時候,可以避開熱鬧地段節省大量的門面租金,把更多的創業資金用到經營活動中去。

7. 傳統金融與互聯網金融哪個應用范圍更廣

當然是傳統金融了,不過以後會是互聯網金融,只不過現在是沒有誠信可言,有了誠信互聯網就是天下

8. 大數據和人工智慧在互聯網金融領域有哪些應用


數據從四個方面改變了金融機構傳統的數據運作方式,從而實現了巨大的商業價值。這四個方面(「四個C」)包括:數據質量的兼容性
(Compatibility)、數據運用的關聯性(Connectedness)、數據分析的成本(Cost)以及數據價值的轉化
(Capitalization)。


大數據在金融業的應用場景正在逐步拓展。在海外,大數據已經在金融行業的風險控制、運營管理、銷售支持和商業模式創新等領域得到了全面嘗試。在國內,金
融機構對大數據的應用還基本處於起步階段。數據整合和部門協調等關鍵環節的挑戰仍是阻礙金融機構將數據轉化為價值的主要瓶頸。


數據技術與數據經濟的發展是持續實現大數據價值的支撐。深度應用正在將傳統IT從「後端」不斷推向「前台」,而存量架構與創新模塊的有效整合是傳統金融
機構在技術層面所面臨的主要挑戰。此外,數據生態的發展演進有其顯著的社會特徵。作為其中的一員,金融機構在促進數據經濟的發展上任重道遠。

為了駕馭大數據,國內金融機構要在技術的基礎上著重引入以價值為導向的管理視角,最終形成自上而下的內嵌式變革。其中的三個關鍵點(「TMT」)包括:團隊(Team)、機制(Mechanism)和思維(Thinking)。

1.價值導向與內嵌式變革—BCG對大數據的理解

「讓數據發聲!」—隨著大數據時代的來臨,這個聲音正在變得日益響亮。為了在喧囂背後探尋本質,我們的討論將從大數據的定義開始。

1.1成就大數據的「第四個V」

大數據是什麼?在這個問題上,國內目前常用的是「3V」定義,即數量(Volume)、速度(Velocity)和種類(Variety)。


雖然有著這樣的定義,但人們從未停止討論什麼才是成就大數據的「關鍵節點」。人們熱議的焦點之一是「到底多大才算是大數據?」其實這個問題在「量」的層
面上並沒有絕對的標准,因為「量」的大小是相對於特定時期的技術處理和分析能力而言的。在上個世紀90年代,10GB的數據需要當時計算能力一流的計算機
處理幾個小時,而這個量現在只是一台普通智能手機存儲量的一半而已。在這個層面上頗具影響力的說法是,當「全量數據」取代了「樣本數據」時,人們就擁有了
大數據。


另外一個成為討論焦點的問題是,今天的海量數據都來源於何處。在商業環境中,企業過去最關注的是ERP(Enterprise Resource
Planning)和CRM(Customer Relationship
Management)系統中的數據。這些數據的共性在於,它們都是由一個機構有意識、有目的地收集到的數據,而且基本上都是結構化數據。隨著互聯網的深
入普及,特別是移動互聯網的爆發式增長,人機互動所產生的數據已經成為了另一個重要的數據來源,比如人們在互聯網世界中留下的各種「數據足跡」。但所有這
些都還不是構成「大量數據」的主體。機器之間交互處理時沉澱下來的數據才是使數據量級實現跨越式增長的主要原因。「物聯網」是當前人們將現實世界數據化的
最時髦的代名詞。海量的數據就是以這樣的方式源源不斷地產生和積累。

「3V」的定義專注於對數據本身的特徵進行描述。然而,是否是量級龐大、實時傳輸、格式多樣的數據就是大數據?

BCG認為,成就大數據的關鍵點在於「第四個V」,即價值(Value)。當量級龐大、實時傳輸、格式多樣的全量數據通過某種手段得到利用並創造出商業價值,而且能夠進一步推動商業模式的變革時,大數據才真正誕生。

1.2變革中的數據運作與數據推動的內嵌式變革

多元化格式的數據已呈海量爆發,人類分析、利用數據的能力也日益精進,我們已經能夠從大數據中創造出不同於傳統數據挖掘的價值。那麼,大數據帶來的「大價值」究竟是如何產生的?


無論是在金融企業還是非金融企業中,數據應用及業務創新的生命周期都包含五個階段:業務定義需求;IT部門獲取並整合數據;數據科學家構建並完善演算法與
模型;IT發布新洞察;業務應用並衡量洞察的實際成效。在今天的大數據環境下,生命周期仍維持原樣,而唯一變化的是「數據科學家」在生命周期中所扮演的角
色。大數據將允許其運用各種新的演算法與技術手段,幫助IT不斷挖掘新的關聯洞察,更好地滿足業務需求。


因此,BCG認為,大數據改變的並不是傳統數據的生命周期,而是具體的運作模式。在傳統的數據基礎和技術環境下,這樣的周期可能要經歷一年乃至更長的時
間。但是有了現在的數據量和技術,機構可能只需幾周甚至更短的時間就能走完這個生命周期。新的數據運作模式使快速、低成本的試錯成為可能。這樣,商業機構
就有條件關注過去由於種種原因而被忽略的大量「小機會」,並將這些「小機會」累積形成「大價值」。

具體而言,與傳統的數據應用相比,大數據在四個方面(「4C」)改變了傳統數據的運作模式,為機構帶來了新的價值。

1.2.1數據質量的兼容性(Compatibility):大數據通過「量」提升了數據分析對「質」的寬容度


在「小數據」時代,數據的獲取門檻相對較高,這就導致「樣本思維」占據統治地位。人們大多是通過抽樣和截取的方式來捕獲數據。同時,人們分析數據的手段
和能力也相對有限。為了保證分析結果的准確性,人們通常會有意識地收集可量化的、清潔的、准確的數據,對數據的「質」提出了很高的要求。而在大數據時代,
「全量思維」得到了用武之地,人們有條件去獲取多維度、全過程的數據。但在海量數據出現後,數據的清洗與驗證幾乎成為了不可能的事。正是這樣的困境催生了
數據應用的新視角與新方法。類似於分布式技術的新演算法使數據的「量」可以彌補「質」的不足,從而大大提升了數據分析對於數據質量的兼容能力。

1.2.2數據運用的關聯性(Connectedness):大數據使技術與演算法從「靜態」走向「持續」


在大數據時代,對「全量」的追求使「實時」變得異常重要,而這一點也不僅僅只體現在數據採集階段。在雲計算、流處理和內存分析等技術的支撐下,一系列新
的演算法使實時分析成為可能。人們還可以通過使用持續的增量數據來優化分析結果。在這些因素的共同作用下,人們一貫以來對「因果關系」的追求開始松動,而
「相關關系」正在逐步獲得一席之地。

1.2.3數據分析的成本(Cost):大數據降低了數據分析的成本門檻


大數據改變了數據處理資源稀缺的局面。過去,數據挖掘往往意味著不菲的投入。因此,企業希望能夠從數據中發掘出「大機會」,或是將有限的數據處理資源投
入到有可能產生大機會的「大客戶、大項目」中去,以此獲得健康的投入產出比。而在大數據時代,數據處理的成本不斷下降,數據中大量存在的「小機會」得見天
日。每個機會本身帶來的商業價值可能並不可觀,但是累積起來就會實現質的飛躍。所以,大數據往往並非意味著「大機會」,而是「大量機會」。

1.2.4數據價值的轉化(Capitalization):大數據實現了從數據到價值的高效轉化


在《互聯網金融生態系統2020:新動力、新格局、新戰略》報告中,我們探討了傳統金融機構在大變革時代所需採取的新戰略思考框架,即適應型戰略。採取
適應型戰略有助於企業構築以下五大優勢:試錯優勢、觸角優勢、組織優勢、系統優勢和社會優勢,而大數據將為金融機構建立這些優勢提供新的工具和動力。從數
據到價值的轉化與機構的整體轉型相輔相成,「內嵌式變革」由此而生。


例如,金融機構傳統做法中按部就班的長周期模式(從規劃、立項、收集數據到分析、試點、落地、總結)不再適用。快速試錯、寬進嚴出成為了實現大數據價值
的關鍵:以低成本的方式大量嘗試大數據中蘊藏的海量機會,一旦發現某些有價值的規律,馬上進行商業化推廣,否則果斷退出。此外,大數據為金融機構打造「觸
角優勢」提供了新的工具,使其能夠更加靈敏地感知商業環境,更加順暢地搭建反饋閉環。此外,數據的聚合與共享為金融機構搭建生態系統提供了新的場景與動
力。

2.應用場景與基礎設施—縱覽海內外金融機構的大數據發展實踐


金融行業在發展大數據能力方面具有天然優勢:受行業特性影響,金融機構在開展業務的過程中積累了海量的高價值數據,其中包括客戶身份、資產負債情況、資
金收付交易等數據。以銀行業為例,其數據強度高踞各行業之首—銀行業每創收100萬美元,平均就會產生820GB的數據。

2.1大數據的金融應用場景正在逐步拓展

大數據發出的聲音已經在金融行業全面響起。作為行業中的「巨無霸」,銀行業與保險業對大數據的應用尤其可圈可點。

2.1.1海外實踐:全面嘗試

2.1.1.1銀行是金融行業中發展大數據能力的「領軍者」


在發展大數據能力方面,銀行業堪稱是「領軍者」。縱觀銀行業的六個主要業務板塊(零售銀行、公司銀行、資本市場、交易銀行、資產管理、財富管理),每個
業務板塊都可以藉助大數據來更深入地了解客戶,並為其制定更具針對性的價值主張,同時提升風險管理能力。其中,大數據在零售銀行和交易銀行業務板塊中的應
用潛力尤為可觀。


BCG通過研究發現,海外銀行在大數據能力的發展方面基本處於三個階段:大約三分之一的銀行還處在思考大數據、理解大數據、制定大數據戰略及實施路徑的
起點階段。還有三分之一的銀行向前發展到了嘗試階段,也就是按照規劃出的路徑和方案,通過試點項目進行測驗,甄選出許多有價值的小機會,並且不停地進行試
錯和調整。而另外三分之一左右的銀行則已經跨越了嘗試階段。基於多年的試錯經驗,他們已經識別出幾個較大的機會,並且已經成功地將這些機會轉化為可持續的
商業價值。而且這些銀行已經將匹配大數據的工作方式嵌入到組織當中。他們正在成熟運用先進的分析手段,並且不斷獲得新的商業洞察。


銀行業應用舉例1:將大數據技術應用到信貸風險控制領域。在美國,一家互聯網信用評估機構已成為多家銀行在個人信貸風險評估方面的好幫手。該機構通過分
析客戶在各個社交平台(如Facebook和Twitter)留下的數據,對銀行的信貸申請客戶進行風險評估,並將結果賣給銀行。銀行將這家機構的評估結
果與內部評估相結合,從而形成更完善更准確的違約評估。這樣的做法既幫助銀行降低了風險成本,同時也為銀行帶來了風險定價方面的競爭優勢。


相較於零售銀行業務,公司銀行業務對大數據的應用似乎缺乏亮點。但實際上,大數據在公司銀行業務的風險領域正在發揮著前所未有的作用。在傳統方法中,銀
行對企業客戶的違約風險評估多是基於過往的營業數據和信用信息。這種方式的最大弊端就是缺少前瞻性,因為影響企業違約的重要因素並不僅僅只是企業自身的經
營狀況,還包括行業的整體發展狀況,正所謂「覆巢之下,焉有完卵」。但要進行這樣的分析往往需要大量的資源投入,因此在數據處理資源稀缺的環境下無法得到
廣泛應用,而大數據手段則大幅減少了此類分析對資源的需求。西班牙一家大型銀行正是利用大數據來為企業客戶提供全面深入的信用風險分析。該行首先識別出影
響行業發展的主要因素,然後對這些因素一一進行模擬,以測試各種事件對其客戶業務發展的潛在影響,並綜合評判每個企業客戶的違約風險。這樣的做法不僅成本
低,而且對風險評估的速度快,同時顯著提升了評估的准確性。


銀行業應用舉例2:用大數據為客戶制定差異化產品和營銷方案。在零售銀行業務中,通過數據分析來判斷客戶行為並匹配營銷手段並不是一件新鮮事。但大數據
為精準營銷提供了廣闊的創新空間。例如,海外銀行開始圍繞客戶的「人生大事」進行交叉銷售。這些銀行對客戶的交易數據進行分析,由此推算出客戶經歷「人生
大事」的大致節點。人生中的這些重要時刻往往能夠激發客戶對高價值金融產品的購買意願。一家澳大利亞銀行通過大數據分析發現,家中即將有嬰兒誕生的客戶對
壽險產品的潛在需求最大。通過對客戶的銀行卡交易數據進行分析,銀行很容易識別出即將添丁的家庭:在這樣的家庭中,准媽媽會開始購買某些葯品,而嬰兒相關
產品的消費會不斷出現。該行面向這一人群推出定製化的營銷活動,獲得了客戶的積極響應,從而大幅提高了交叉銷售的成功率。


客戶細分早已在銀行業得到廣泛應用,但細分維度往往大同小異,包括收入水平、年齡、職業等等。自從開始嘗試大數據手段之後,銀行的客戶細分維度出現了突
破。例如,西班牙的一家銀行從Facebook和Twitter等社交平台上直接抓取數據來分析客戶的業余愛好。該行把客戶細分為常旅客、足球愛好者、高
爾夫愛好者等類別。通過分析,該行發現高爾夫球愛好者對銀行的利潤度貢獻最高,而足球愛好者對銀行的忠誠度最高。此外,通過分析,該行還發現了另外一個小
客群:「敗家族」,即財富水平不高、但消費行為奢侈的人群。這個客群由於人數不多,而且當前的財富水平尚未超越貴賓客戶的門檻,因此往往被銀行所忽略。但
分析顯示這一人群能夠為銀行帶來可觀的利潤,而且頗具成長潛力,因此該行決定將這些客戶升級為貴賓客戶,深入挖掘其潛在價值。


在對公業務中,銀行同樣可以藉助大數據形成更有價值的客戶細分。例如,在BCG與一家加拿大銀行的合作項目中,項目組利用大數據分析技術將所有公司客戶
按照行業和企業規模進行細分,一共建立了上百個細分客戶群。不難想像,如果沒有大數據的支持,這樣深入的細分是很難實現的。然後,項目組在每個細分群中找
出標桿企業,分析其銀行產品組合,並將該細分群中其他客戶的銀行產品組合與標桿企業進行比對,從而識別出差距和潛在的營銷機會。項目組將這些分析結果與該
行的對公客戶經理進行分享,幫助他們利用這些發現來制定更具針對性的銷售計劃和話術,並取得了良好的效果。客戶對這種新的銷售方式也十分歡迎,因為他們可
以從中了解到同行的財務狀況和金融安排,有助於對自身的行業地位與發展空間進行判斷。


銀行業應用舉例3:用大數據為優化銀行運營提供決策基礎。大數據不僅能在前台與中台大顯身手,也能惠及後台運營領域。在互聯網金融風生水起的當
下,「O2O」(OnlineToOffline)成為了銀行的熱點話題。哪些客戶適合線上渠道?哪些客戶不願「觸網」?BCG曾幫助西班牙一家銀行通過
大數據技術應用對這些問題進行了解答。項目組對16個既可以在網點也可以在網路與移動渠道上完成的關鍵運營活動展開分析,建立了12個月的時間回溯深度,
把客戶群體和運營活動按照網點使用強度以及非網點渠道使用潛力進行細分。分析結果顯示,大約66%的交易活動對網點的使用強度較高,但同時對非網點渠道的
使用潛力也很高,因此可以從網點遷移到網路或移動渠道。項目組在客戶細分中發現,年輕客戶、老年客戶以及高端客戶在運營活動遷移方面潛力最大,可以優先作
為渠道遷徙的對象。通過這樣的運營調整,大數據幫助銀行在引導客戶轉移、減輕網點壓力的同時保障了客戶體驗。


BCG還曾利用專有的大數據分析工具NetworkMax,幫助一家澳大利亞銀行優化網點布局。雖然銀行客戶的線上活動日漸增多,但金融業的鐵律在互聯
網時代依然適用,也就是說在客戶身邊設立實體網點仍然是金融機構的競爭優勢。然而,網點的運營成本往往不菲,如何實現網點資源的價值最大化成為了每家銀行
面臨的問題。在該項目中,項目組結合銀行的內部數據(包括現有的網點分布和業績狀況等)和外部數據(如各個地區的人口數量、人口結構、收入水平等),對
350多個區域進行了評估,並按照主要產品系列為每個區域制定市場份額預測。項目組還通過對市場份額的驅動因素進行模擬,得出在現有網點數量不變的情況下
該行網點的理想布局圖。該行根據項目組的建議對網點布局進行了調整,並取得了良好的成效。這個案例可以為許多銀行帶來啟示:首先,銀行十分清楚自身的網點
布局,有關網點的經營業績和地址的信息全量存在於銀行的資料庫中。其次,有關一個地區的人口數量、人口結構、收入水平等數據都是可以公開獲取的數據。通過
應用大數據技術來把這兩組數據結合在一起,就可以幫助銀行實現網點布局的優化。BCG基於大數據技術而研發的Network
Max正是用來解決類似問題的工具。


銀行業應用舉例4:創新商業模式,用大數據拓展中間收入。過去,坐擁海量數據的銀行考慮的是如何使用數據來服務其核心業務。而如今,很多銀行已經走得更
遠。他們開始考慮如何把數據直接變成新產品並用來實現商業模式,進而直接創造收入。例如,澳大利亞一家大型銀行通過分析支付數據來了解其零售客戶的「消費
路徑」,即客戶進行日常消費時的典型順序,包括客戶的購物地點、購買內容和購物順序,並對其中的關聯進行分析。該銀行將這些分析結果銷售給公司客戶(比如
零售業客戶),幫助客戶更准確地判斷合適的產品廣告投放地點以及適合在該地點進行推廣的產品。這些公司客戶過去往往需要花費大量金錢向市場調研公司購買此
類數據,但如今他們可以花少得多的錢向自己的銀行購買這些分析結果,而且銀行所提供的此類數據也要可靠得多。銀行通過這種方式獲得了傳統業務之外的收入。
更重要的是,銀行通過這樣的創新為客戶提供了增值服務,從而大大增強了客戶粘性。

閱讀全文

與互聯網金融的應用領域有哪些相關的資料

熱點內容
中天高科國際貿易 瀏覽:896
都勻經濟開發區2018 瀏覽:391
輝縣農村信用社招聘 瀏覽:187
鶴壁市靈山文化產業園 瀏覽:753
國際金融和國際金融研究 瀏覽:91
烏魯木齊有農村信用社 瀏覽:897
重慶農村商業銀行ipo保薦機構 瀏覽:628
昆明市十一五中葯材種植產業發展規劃 瀏覽:748
博瑞盛和苑經濟適用房 瀏覽:708
即墨箱包貿易公司 瀏覽:720
江蘇市人均gdp排名2015 瀏覽:279
市場用經濟學一覽 瀏覽:826
中山2017年第一季度gdp 瀏覽:59
中國金融證券有限公司怎麼樣 瀏覽:814
國內金融機構的現狀 瀏覽:255
西方經濟學自考論述題 瀏覽:772
汽車行業產業鏈發展史 瀏覽:488
創新文化產業發展理念 瀏覽:822
國際貿易開題報告英文參考文獻 瀏覽:757
如何理解管理經濟學 瀏覽:22