❶ 互聯網金融借力大數據玩轉風險控制
互聯網金融借力大數據玩轉風險控制
近兩年,金融行業內競爭在網路平台上全面展開。大數據時代,這種競爭說到底就是「數據為王」。為什麼大數據在互聯網金融領域扮演著如此重要的角色?業內人士認為,「互聯網+金融」具有共享性,提供了「大數據」和更充分的信息,即通過更完善的價格信號,幫助協調不同經濟部門非集中化決策。
信息占據核心地位
信息占金融市場核心地位。金融市場是進行資本配置和監管的一種制度安排,而資本配置及其監管從本質上來說是信息問題。因此,金融市場即進行信息的生產、傳遞、擴散和利用的市場。
在「互聯網+金融」時代,信息的傳遞和擴散更加便捷,信息的生產成本更為低廉,信息的利用渠道和方式也愈發多元化,從而越來越容易實現信息共享。這種共享不僅包含著各類不同金融機構之間的信息共享,而且包含著金融機構與其他行業之間的信息共享、金融機構和監管機構及企業間的共享等。
信息共享並由此形成的「大數據」,降低了單個金融機構獲得信息、甄別信息的成本,提高了信息利用的效率,使信息的生產和傳播充分而順暢,從而極大地降低了信息的不完備和不對稱程度。「大數據」不僅使投資者可以獲取各種投資品種的價格及影響這些價格的因素的信息,而且籌資者也能獲取不同的融資方式的成本的信息,管理部門能夠獲取金融交易是否正常進行、各種規則是否得到遵守的信息,使金融體系的不同參與者都能作出各自的決策。
正確看待大數據徵信
互聯網金融的發展帶火了P2P市場,也折射出風控體系建設的缺失。P2P跑路現象主要原因就是風控缺失,體現在「重擔保、輕風控」和「重線上風控、輕線下調查」。
當前,多數P2P平台「重擔保、輕風控」的思路是不正確的,擔保是外界因素,風控是內在因素,一味強調用外在的因素而不解決自身的問題,不可能實現良好運轉。互聯網金融的風險管理不在規則之中,而在互聯網和金融雙重疊加的對象之中,其最基本的風險邊界應是保證投資者的資產安全。守住了安全底線,這些平台才能健康成長。所以,P2P平台根本的安全底線還在於加強自身對象的風控。
另一方面,風控分為貸前、貸中、貸後風控。目前有些P2P平台從最開始的貸前風控就缺失,貸前風控最重要的是要實現「線下調查」,即通過線下實地走訪和考察,對客戶信息進行交叉驗證和真實性驗證,包括對借款人銀行流水、徵信報告、財產證明、工作證明等的審查,通過審查評估借款人還款能力。這些線下風控是不可或缺的,不能迷信或過分誇大「互聯網+」的效率和普惠,線上的大數據和線下的實地考察必須結合。
基於大數據、個人徵信的風控手段已有很多,大數據徵信是實現P2P風控的創新路徑。但是也需要正確看待,既不能要求大數據徵信一步登天,一下子帶來質的改變;也不能風聲鶴唳,一有創新就以各種名義圍追堵截,而需要給予更多理性的包容和試錯的空間,在漸進創新中不斷完善大數據徵信體系。
目前存在的困難:
一是數據的虛擬性和「信息噪音」。雖然大數據及其分析提高了信息獲取的數量和精度,但由於虛擬世界中信息大爆炸造成的「信息噪音」,導致交易者身份、交易真實性、信用評價的驗證難度更大,反而可能在另一層面更強化信息不對稱程度,也更容易存在信息壟斷。
二是信用數據關聯的不確定性。信用數據是多樣化的,包括朋友信用、愛情信用、事業信用等。所謂忠孝不能兩全,一個對朋友忠誠的人不一定對事業忠誠。對事業或工作忠誠,也不一定能說明他的金融信用好。大數據通過日常信用來判斷金融信用會出現偏差。
三是「數據孤島」不能實現數據共享。互聯網平台具有強烈的規模效應,平台越大越容易產生數據,越容易使用數據。例如,阿里小貸主要通過賣家累計的海量交易信息及資金流水,也可通過大數據的分析在幾秒內完成對商家的授信。但是,阿里小貸的數據,不可能提供給其他公司使用。因此,下一步應推動數據的整合和共享。
玩轉大數據風控系統
傳統的風控模式更多關注的是靜態風險,對風險進行預判。而P2P市場讓越來越多的傳統金融企業轉型互聯網金融,大數據技術要對風險進行實時把握,要做到兩點:大數據和雲計算結合以及大數據的流處理模式。
大數據和雲計算結合,實現了實時監控。雲計算為大數據實時把握提供了硬體基礎,可以實現秒級的數據採集、分析和挖掘。流處理模式實現了靜態風險和動態風險的有效結合。一種人習慣先把信息存下來,然後一次性地處理掉,也叫批處理,如定期處理過期郵件;另一種人喜歡信息來一點處理一點,無用信息直接過濾掉,有用的存起來。後者就是流處理的基本範式,實現了實時監控。
怎樣才能針對企業自身的發展和業務方向,玩轉大數據風控系統,使其發揮到最大作用?我認為,要關注「大眾數據」。要意識到互聯網「長尾效應」的作用,互聯網環境下「得大眾者得天下」,關注大眾數據,要了解大眾心態,在歸屬感、成就感和參與感上下功夫。
還要將業務驅動轉向數據驅動。理解數據的價值,通過數據處理創造商業價值,看似零散的數據背後尋找消費邏輯。此外,還應改造公司數據相關的IT部門,將其從「成本中心」轉化為「利潤中心」,充分認識大數據是核心競爭力,重視其挖掘和預測的能力。
當然,實時大數據風控還需要很多方面的探索,如何藉助大數據建立全生命風控體系,形成貸前、貸中、貸後流程管理系統和決策系統。另外,還需加強信用數據相關性研究和量化模型的開發,金融信用(主要指借貸數據)可獲得性比日常信用數據難,以金融信用為中心,通過日常信用,構建個人信用評估體系。