① 寻找已经在复旦读研的师兄师姐!!!如何考复旦大学的国际贸易方面的研究生
1:上复旦的研究生网站看一看历年考研的参考书目,然后仔细学习
2:找找国贸的导师,给他们发发邮件,虚心请教一下
② 复旦大学经济学院国际贸易专业研究生入学考试英语一和数学三各指哪些内容
是这样的:
2009年数学三考试大纲 数 学 三
考试科目 微积分56%、线性代数22%、概率论与数理统计22%
与08年大纲比较------ 深蓝部分为去掉部分 大红部分为修改部分
微 积 分
一、函数、极限、连续
考试内容
函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、隐函数、反函数、分段函数和隐函数基本初等函数的性质及图形初等函数函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限和右极限无穷小和无穷大的概念及关系 无穷小的性质及无穷小的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:
,
函数连续的概念 函数间断点的类型 初等函数的连续性闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,理解初等函数的概念.
5.了解数列极限和函数极限(包括左、右极限)的概念.
6.理解无穷小的概念和基本性质,掌握无穷小的比较方法.了解无穷大的概念及其与无穷小的关系.
7.了解极限的性质与极限存在的两个准则,掌握极限四则运[wiki]算法[/wiki]则,会应用两个重要极限.
8.理解函数连续性的概念(含左连续与右连续), 会判别函数间断点的类型.
9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值与最小值定理、介值定理),并会应用这些性质.
二、一元函数微分学
考试内容
导数和微分的概念 导数的几何意义和经济意义函数的可导性与连续性之间的关系 平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法 高阶导数 一阶微分形式不变性微分中值定理 洛必达(L’Hospital)法则函数单调性的判别 函数的极值函数图形的凹凸性、拐点及渐近线 函数图形的描绘函数的最大值与最小值
考试要求
1. 理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线[wiki]方程[/wiki]和法线方程.
2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导法.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.
5.理解罗尔(Rol1e)定理、拉格朗日(Lagrange)中值定理、了解泰勒(Taylor)定理、了解柯西(Cauchy)中值定理,掌握这四个定理的简单应用.
6.会用洛必达法则求极限.
7.掌握函数单调性的判别方法,了解函数极值的概念掌握函数极值、最大值和最小值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数具有二阶导数,当 时, 的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.
9.会描绘简单函数的图形.
三、一元函数积分学
考试内容
原函数和不定积分的概念 不定积分的基本性质基本积分公式 定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法和分部积分法 反常(广义)积分积分的应用
考试要求
1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式;掌握不定积分的换元积分法与分部积分法.
2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.
3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用题.
4.了解反常积分的概念,会计算反常积分.
四、多元函数微积分学
考试内容
多元函数的概念 二元函数的几何意义 二元函数的极限与连续性的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的广义二重积分
考试要求
1.了解多元函数的概念,了解二元函数的几何意义.
2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.
3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会用多元隐函数的偏导数.
4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决某些简单的应用问题.
5.了解二重积分的概念与基本性质,掌握二重积分的计算方法([wiki]直角[/wiki]坐标、极坐标),了解无界区域上较简单的广义二重积分并会计算.
五、无穷级数
考试内容
常数项级数收敛与发散的概念收敛级数的和的概念 级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性正项级数收敛性的判别任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区问(指开区间)和收敛域幂级数的和函数 幂级数在收敛区间内的基本性质 简单幂级数的和函数的求法
初等函数的幂级数展开式
考试要求
1.了解级数的收敛与发散、收敛级数的和的概念.
2.了解(原为“掌握”)级数的基本性质及级数收敛的必要条件,掌握几何级数及p 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法(去掉)
3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解(原为“掌握”)交错级数的莱布尼茨判别法.
4.会求幂级数的收敛半径、收敛区间及收敛域.
5.了解幂级数在收敛区间内的基本性质(和函数的连续性、逐项微分和逐项积分),会求简单幂级数在其收敛区间内的和函数,并会由此求出某些数项级数的和.
6。了解(原为“掌握”)ex,sinx,cosx,ln(1+x),(1+x)a麦克劳林展开式,会用它们将简单函数间接展开成幂级数(去掉).
六、常微分方程与差分方程
考试内容
微分方程的概念变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程与差分方程(去掉)的简单应用
考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法.
3.会解二阶常系数齐次线性微分方程.
4. 了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与乘积(去掉)的二阶常系数非齐次线性微分方程.
5.了解差分与差分方程及其通解与特解等概念.
6.了解(原为“掌握”)一阶常系数线性差分方程的求解方法.
7.会用微分方程和差分方程(去掉)求解简单的经济应用问题.
Back
线 性 代 数
一、行列式
考试内容
行列式的概念和基本性质 行列式按行(列)展开定理
考试要求
1.理解行列式的概念,掌握行列式的性质.
2. 会应用行列式的性质和行列式按行(列)展开定理计算行列式.
二、矩阵
考试内容
矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂方阵乘积的行列式
矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵矩阵的初等变换 初等矩阵 矩阵的秩矩阵的等价分块矩阵及其运算
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义和性质,理解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵的乘积的行列式的性质.
3.理解逆矩阵的概念、掌握逆矩阵的性以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.
5.了解分块矩阵的概念,掌握分块矩阵的运算法则.
三、向量
考试内容
向量的概念 向量的线性组合与线性表示 向量组线性相关与线性元关 向量组的极大线性元关组 等价向量组 向量组的秩向量组的秩与矩阵的秩之间的关系
向量的内积 线性无关向量组的正交规范化方法
考试要求
1.了解向量的概念,掌握向量的加法和数乘运算法则.
2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.理解向量组的极大无关组的概念,会求向量组的极大无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.
5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法
四、线性方程组
考试内容
线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解
考试要求
1.会用克莱姆法则解线性方程组.
2. 掌握非齐次线性方程组有解和无解的判定方法.
3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组的结构及通解的概念.
5. 掌握用初等行变换求解线性方程组的方法.
五、矩阵的特征值和特征向量
考试内容
矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵
考试要求
1.理解矩阵的特征值、特征向量等概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.
2.理解矩阵相似的概念、掌握相似矩阵的性质,了解矩阵可对角化的充分条件和必要条件,掌握将矩阵化为相似对角矩阵的方法.
3.掌握实对称矩阵的特征值和特征向量的性质.
六、二次型
考试内容
二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩惯性定理 二次型的标准形和规范形正交变换和配方法化二次型为标准形二次型及其矩阵的正定性
考试要求
1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念.
2.理解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会甩正交变换和配方法化二次型为标准形.
3.理解正定二次型、正定矩阵的概念,并掌握其判别法.
Back
概 率 论 与 数 理 统 计
一、随机事件和概率
考试内容
随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式事件的独立性
独立重复事件
考试要求
1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件间的关系及运算.
2. 理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法、乘法公式、全概率公式及贝叶斯(Bayes)公式等.
3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.
二、随机变量及其分布
考试内容
随机变量 随机变量的分布函数及其性质 离散型随机变量的概率分布连续型随机变量的概率密度 常见随机变量的分布随机变量函数的分布
考试要求
1.理解随机变量的概念;理解分布函数
的概念及性质;会计算与随机变量有关的事件的概率.
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.
3. 理解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布、指数分布及其应用,其中参数为 的指数分布 的密度函数为
5.会求随机变量函数的分布.
三、多维随机变量的分布
考试内容
多维随机变量及其分布函数 二维离散型随机变量概率分布、边缘分布和条件分布、二维连续型随机变量的概率密度 边缘概率密度和条件密度随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布
考试要求
1.理解多维随机变量的分布的概念和基本性质.
2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度.掌握二维随机变量的边缘概率分布和条件分布.
3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件;理解随机变量的不相关性与独立性的关系.
4.掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义.
5.会根据两个随机变量的联合分布求其函数的分布;会根据多个相互独立随机变量的联合分布求其函数的分布.
四、随机变量的数字特征
考试内容
随机变量的[wiki]数学[/wiki]期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质
考试要求
1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.
2.会随机变量函数的数学期望.
3.了解(原为“掌握”)切比雪夫不等式.
五、大数定律和中心极限定理
考试内容
切比雪夫(Chebyhev)大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列维-林德伯格(Levy-Lindberg)定理
考试要求
1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).
2.了解棣莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维-林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.
3、4两条中的内容全部去掉了。
二、概率论与数理统计部分
六、数理统计的基本概念
考试内容
总体 个体 简单随机样本 统计量 经验分布函数 样本均值样本方方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布
考试要求
1.了解(原为“理解”)总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:
.
2.了解(原为“理解”)产生 变量、 变量和变量的典型模型;理解标准正态分布、 分布、分布和 分布的分位数,会查相应的数值表.
3.掌握正态总体的抽样分布:(去掉)样本均值、样本方差、样本矩、样本均值差、样本方差比(去掉)的抽样分布.
4.了解(原为“理解”)经验分布函数的概念和性质,会根据样本值求经验分布函数(去掉).
七、参数估计
考试内容
点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准区间估计的概念,单个正态总体均值的区间估计,单个正态总体方差和标准差的区间估计,两个正态总体的均值差和方差比的区间估计(去掉)
考试要求
1.了解(原为“理解”)参数的点估计、估计量与估计值的概念;了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验正估计量的无偏性(去掉).
2.掌握矩估计法(一阶、二阶矩)和最大似然估计法
3.掌握建立未知参数的(双侧和单侧)置信区间的一般方法;掌握正态总体均值、方差、标准差、矩以及与其相联系的数值特征的置信区间的求法.
4.掌握两个正态总体的均值差和方差比及相关数字特征的置信区间的求法.
八、假设检验(去掉)
考试内容
显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验
考试要求
1.理解“假设”的概念和基本类型;理解显著性检验的基本思想,掌握假设检验的基本步骤;会构造简单假设的显著性检验.
2.理解假设检验可能产生的两类错误,对于较简单的情形,会计算两类错误的概率.
3.掌握单个及两个正态总体的均值和方差的假设检验.
试 卷 结 构
(-)总分 试卷满分为150分
(二)内容比例 微积分约56% 线性代数约22% 概率论与数理统计约22%
(三)题型比例 填空题与选择题约37% 解答题(包括证明题)约63%
注:考试时间为 180分钟
希望对你有所帮助! 祝你成功!
③ 复旦大学的国际经济与贸易专业好吗
我本来是学语言的,之后修了复旦大学的国经贸的第二专业,顺利进入四大(不要问我四大是什么啊)。同事中也有一些是国经贸专业出身的,应该说就业不错的。在复旦,国经贸属于管理学院,整个学院的就业率一直很高。
④ 复旦大学国际贸易学专业每年招生研究生的人数多吗报录比一般是多少该看些什么书比较好呢
近几年来一般都是招10个左右,去年的报录比是8.33,竞争还是蛮大的 ,复旦经济学院有指定参考书的,你去看一下就知道了,一共有7本的;辅导书籍比较好的是上海翔高的系列,差不多是考复旦856的必备资料的
⑤ 复旦大学出版社 袁建新主编的 国际贸易实务(第三版)课后思考题和案例分析题答案 504474707
第二版或者第五版的可以么,没有第三版的
⑥ 2018年考研复旦大学经济学院的国际贸易学,会不会难,要怎么复习
总体来说,世经西经分数最高,其余专业分数线差不多。政经招六个,其余各个经济学专业招一两个人。政经虽然招六个人,不过报考人数较多,其余专业虽然只招一两个人,不过报的人少,所以说不上哪个专业更好考,今年好几个招一两个人的专业都没人上线,如果报考了这些专业上线了就能进,所以还是很拼人品的,不报世经西经的话不用纠结。
还有人问政经是不是就是学马克思,其实政经只是在本科教学的语境下专指马克思,政经的范围很广,详情可以看聚英考研网官网上专业介绍和导师介绍,主要是研究经济制度和企业管理方面,不用纠结这点。所以报考学硕的话,从分数的角度来说大致分为三档,金融,世经西经,其它经济学。
可以根据自己的实际复习情况来决定报考,我是定的考856,到后期觉得复习状态不好,所以没报世经西经。不用纠结专业名字,虽然我曾经也是这样。看学长说其实选课时大家都一起选,如果你实在对金融感兴趣到时也可以选金融相关的课,所以如果实力不是很强的不建议报金融。
复旦会不会歧视本科学校不好的学生?其实从我参加复试的情况来看,复旦的复试是非常公平的,老师完全是根据你的面试表现打分,而且初试成绩也会在网站上公布,没有听到谁是因为本科学校不好的而被刷的,而且经院复试刷人非常少,而且老师们会想着办法帮你调剂的,所以只要不是刚刚上线或者复试表现太差,一般不会被刷的,这点完全可以放心,最重要的是初试考分要高。
下面给你总结一下考研复旦大学856经济学的复习用书,包括参考书目和复习资料:
参考书目:
《政治经济学教材(第13版)》蒋学模主编,上海人民出版社,2005年
《通俗资本论》洪远朋著,上海科学技术文献出版社,2009年
《西方经济学》袁志刚,高等教育出版社,2010年
《微观经济学》陈钊、陆铭,高等教育出版社,2008年
《宏观经济学》袁志刚、樊潇彦,高等教育出版社,2008年
《现代西方经济学习题指南(第6版)》,尹伯成,复旦大学出版社2009年
《国际经济学(第2版)》华民,复旦大学出版社,2010年
复习资料:
《2018复旦大学856经济学综合基础考研复习全书》
《2018复旦大学856经济学综合基础考研历年真题与答案解析》
通过查找历年的报录比可以看出该专业的竞争激励程度,不过这些都是相对而言的,主要还是要看你自己,好好学,学到家了就不难。反之,则难。
⑦ 复旦大学国际贸易专业考研要考哪些专业课啊,急求!!!!!!!!!!!
研究方向 :01国际贸易理论与政策02国际经济合作03国际市场营销德
考试科目 :①101政治版理论②权201英语或202俄语或203日语或204德语
③304数学三④420经济学综合基础
专业课考《经济学综合基础》,包括《政治经济学》《微观经济学》《宏观经济学》《国际经济学》,具体的参考书目如下:(来自于复旦研究生院)
①《政治经济学教材》 蒋学模主编 上海人民出版社
②《微观经济学》 陈钊、 陆铭 高等教育出版社 2008年2月
或《微观经济学》 周惠中 上海人民出版社
③《宏观经济学》 袁志刚 、樊潇彦 高等教育出版社 2008年2月
或《宏观经济学》袁志刚 上海人民出版社
④《现代西方经济学习题指南》 尹伯成 复旦大学出版社
⑤《国际经济学》 华民 复旦大学出版社 2000
⑧ 复旦大学国际商务硕士没有指定参考书目,请问可以看哪些书籍
一、考试性质
《国际商务专业基础》是2011年国际商务硕士(MIB)专业学位研究生入学统一考试的科目之一。《国际商务专业基础》考试要力求反映国际商务硕士专业学位的特点,科学、公平、准确、规范地测评考生的专业基础素质和综合能力,以利于选拔具有发展潜力的优秀人才入学,为国家开放型经济体系建设培养具有良好职业操守和国际视野、具有较强跨文化沟通以及分析与解决实际问题能力的高层次、应用型、复合型国际商务专业人才。
二、考试要求
测试考生对于国际商务相关的基本概念、基本理论、基础知识的掌握情况以及综合运用分析和解决国际商务现实问题的能力。
三、考试方式与分值
本科目满分150分,由各培养单位自行命题,全国统一考试。答题方式为闭卷、笔试。考试时间180分钟。
四、考试内容
第一部分 国际贸易理论与政策
第一章 国际贸易理论
第一节 绝对优势与比较优势论
第二节 要素禀赋论
第三节 贸易保护理论
第四节 国际贸易新理论
第二章 国际贸易政策与壁垒
第一节 关税措施
第二节 非关税措施
第三节 国际贸易摩擦
第四节 国际贸易中的知识产权保护与环境保护政策
第三章 货物贸易与服务贸易
第一节 货物贸易及其类型
第二节 服务贸易与服务外包
第三节 技术贸易与国际劳务合作
第四节 国际贸易的创新方式
第四章 区域经济一体化与多边贸易体制
第一节 经济全球化与世界贸易组织
第二节 欧洲一体化实践
第三节 其他区域自由贸易安排
第四节 中国的区域经济合作实践
第二部分 国际直接投资与跨国公司
第一章 国际直接投资与跨国公司
第一节 国际直接投资与跨国公司理论
第二节 水平与垂直型对外直接投资
第三节 跨国公司发展及其主要类型
第四节 中国式跨国公司的理论与实践
第二章 企业对外直接投资的战略决策
第一节 对外直接投资的选址决策
第二节 对外直接投资的时机决策
第三节 对外直接投资进入模式决策
第三章 对外直接投资的母国与东道国效应
第一节 对外直接投资与母国利益和代价
第二节 对外直接投资与东道国效应
第三节 对外直接投资中的政府行为
第四节 国际企业与政府的议价能力
第三部分 国际金融
第一章 国际货币体系与汇率制度
第一节 金本位制度
第二节 布雷顿森林体系
第三节 浮动汇率制度
第四节 国际货币体系及其改革
第五节 人民币汇率改革
第二章 外汇市场、外汇业务与风险
第一节 外汇市场与外汇业务
第二节 汇率决定
第三节 外汇风险
第三章 国际金融市场
第一节 国际金融市场概述
第二节 货币市场
第三节 债券市场
第四节 股权市场
第四章 国际金融危机
第一节 90年代以来的国际金融危机
第二节 国际金融危机背景下的商务环境
第三节 国际金融创新
第四节 国际金融体系改革
第四部分 国际商务环境与运营
第一章 国际商务环境
第一节 国际商务文化环境
第二节 政治、法律和商业伦理
第二章 国际营销
第一节 目标市场选择
第二节 营销管理
第三章 国际物流与供应链管理
第一节 国际物流定义与问题
第二节 国际物流与供应链管理
第四章 国际会计与税收
第一节 跨国间主要会计差异
第二节 国际税收
另外还有,专业招生人数:35
⑨ 复旦国际贸易考研
十月份开始网上报名
一般复习1-2个学期就可以了
复旦大学代码:10246;地址:上海市邯郸路220号;邮政编码:200433;联系部门:研究生院招生办公室;电话:(021)65642673或65643991;传真:(021)65644159;Email:[email protected];网址:http://www.gsao.fudan .e.cn。
020206 国际贸易学 10 ①101政治理论②201英语或202俄语或203日语或214德语③303数学三④856经济学综合基础
01 国际贸易理论与政策
02 国际经济合作
03 国际市场营销
参考书
①《政治经济学教材》 蒋学模主编 上海人民出版社
②《微观经济学》 陈钊、 陆铭 高等教育出版社 2008年2月
③《宏观经济学》 袁志刚 、樊潇彦 高等教育出版社 2008年2月
④《现代西方经济学习题指南》 尹伯成 复旦大学出版社
⑤《国际经济学》 华民 复旦大学出版社 2000
⑩ 复旦大学国际贸易90年毕业郁晓红
怎么了,来秀下自己,还是想来交朋友的