㈠ 大数据怎样影响着金融业
大数据可以挖掘和分析金融信息深层次的内容,使决策者能够把握重点,引导战略方向。
正在来临的大数据时代,金融机构之间的竞争将在网络信息平台上全面展开,说到底就是“数据为王”。谁掌握了数据,谁就拥有风险定价能力,谁就可以获得高额的风险收益,最终赢得竞争优势。
中国金融业正在步入大数据时代的初级阶段。经过多年的发展与积累,目前国内金融机构的数据量已经达到100TB以上级别,并且非结构化数据量正在以更快的速度增长。金融机构行在大数据应用方面具有天然优势:一方面,金融企业在业务开展过程中积累了包括客户身份、资产负债情况、资金收付交易等大量高价值密度的数据,这些数据在运用专业技术挖掘和分析之后,将产生巨大的商业价值;另一方面,金融机构具有较为充足的预算,可以吸引到实施大数据的高端人才,也有能力采用大数据的最新技术。
总体看,正在兴起的大数据技术将与金融业务呈现快速融合的趋势,给未来金融业的发展带来重要机遇。
首先,大数据推动金融机构的战略转型。在宏观经济结构调整和利率逐步市场化的大环境下,国内金融机构受金融脱媒影响日趋明显,表现为核心负债流失、盈利空间收窄、业务定位亟待调整。业务转型的关键在于创新,但现阶段国内金融机构的创新往往沦为监管套利,没有能够基于挖掘客户内在需求,提供更有价值的服务。而大数据技术正是金融机构深入挖掘既有数据,找准市场定位,明确资源配置方向,推动业务创新的重要工具。
其次,大数据技术能够降低金融机构的管理和运行成本。通过大数据应用和分析,金融机构能够准确地定位内部管理缺陷,制订有针对性的改进措施,实行符合自身特点的管理模式,进而降低管理运营成本。此外,大数据还提供了全新的沟通渠道和营销手段,可以更好的了解客户的消费习惯和行为特征,及时、准确地把握市场营销效果。
第三,大数据技术有助于降低信息不对称程度,增强风险控制能力。金融机构可以摈弃原来过度依靠客户提供财务报表获取信息的业务方式,转而对其资产价格、账务流水、相关业务活动等流动性数据进行动态和全程的监控分析,从而有效提升客户信息透明度。目前,先进银行已经能够基于大数据,整合客户的资产负债、交易支付、流动性状况、纳税和信用记录等,对客户行为进行全方位评价,计算动态违约概率和损失率,提高贷款决策的可靠性。
当然,也必须看到,金融机构在与大数据技术融合的过程中也面临诸多挑战和风险。
一是大数据技术应用可能导致金融业竞争版图的重构。信息技术进步、金融业开放以及监管政策变化,客观上降低了行业准入门槛,非金融机构更多地切入金融服务链条,并且利用自身技术优势和监管盲区占得一席之地。而传统金融机构囿于原有的组织架构和管理模式,无法充分发挥自身潜力,反而可能处于竞争下风。
二是大数据的基础设施和安全管理亟待加强。在大数据时代,除传统的账务报表外,金融机构还增加了影像、图片、音频等非结构化数据,传统分析方法已不适应大数据的管理需要,软件和硬件基础设施建设都亟待加强。同时,金融大数据的安全问题日益突出,一旦处理不当可能遭受毁灭性损失。近年来,国内金融企业一直在数据安全方面增加投入,但业务链拉长、云计算模式普及、自身系统复杂度提高等,都进一步增加了大数据的风险隐患。
三是大数据的技术选择存在决策风险。当前,大数据还处于运行模式的探索和成长期,分析型数据库相对于传统的事务型数据库尚不成熟,对于大数据的分析处理仍缺乏高延展性支持,而且它主要仍是面向结构化数据,缺乏对非结构化数据的处理能力。在此情况下,金融企业相关的技术决策就存在选择错误、过于超前或滞后的风险。大数据是一个总体趋势,但过早进行大量投入,选择了不适合自身实际的软硬件,或者过于保守而无所作为都有可能给金融机构的发展带来不利影响。
应该怎样将大数据应用于金融企业呢?
尽管大数据在金融企业的应用刚刚起步,目前影响还比较小,但从发展趋势看,应充分认识大数据带来的深远影响。在制订发展战略时,董事会和管理层不仅要考虑规模、资本、网点、人员、客户等传统要素,还要更加重视对大数据的占有和使用能力,以及互联网、移动通讯、电子渠道等方面的研发能力;要在发展战略中引入和践行大数据的理念和方法,推动决策从“经验依赖”型向“数据依靠”型转化;要保证对大数据的资源投入,把渠道整合、信息网络化、数据挖掘等作为向客户提供金融服务和创新产品的重要基础。
(一)推进金融服务与社交网络的融合
我国金融企业要发展大数据平台,就必须打破传统的数据源边界,注重互联网站、社交媒体等新型数据来源,通过各种渠道获取尽可能多的客户和市场资讯。首先要整合新的客户接触渠道,充分发挥社交网络的作用,增强对客户的了解和互动,树立良好的品牌形象。其次是注重新媒体客服的发展,利用各种聊天工具等网络工具将其打造成为与电话客服并行的服务渠道。三是将企业内部数据和外部社交数据互联,获得更加完整的客户视图,进行更高效的客户关系管理。四是利用社交网络数据和移动数据等进行产品创新和精准营销。五是注重新媒体渠道的舆情监测,在风险事件爆发之前就进行及时有效的处置,将声誉风险降至最低。
(二)处理好与数据服务商的竞争、合作关系
当前各大电商平台上,每天都有大量交易发生,但这些交易的支付结算大多被第三方支付机构垄断,传统金融企业处于支付链末端,从中获取的价值较小。为此,金融机构可考虑自行搭建数据平台,将核心话语权掌握在自己的手中。另一方面,也可以与电信、电商、社交网络等大数据平台开展战略合作,进行数据和信息的交换共享,全面整合客户有效信息,将金融服务与移动网络、电子商务、社交网络等融合起来。从专业分工角度讲,金融机构与数据服务商开展战略合作是比较现实的选择;如果自办电商,没有专业优势,不仅费时费力,还可能丧失市场机遇。
(三)增强大数据的核心处理能力
首先是强化大数据的整合能力。这不仅包括金融企业内部的数据整合,更重要的是与大数据链条上其他外部数据的整合。目前,来自各行业、各渠道的数据标准存在差异,要尽快统一标准与格式,以便进行规范化的数据融合,形成完整的客户视图。同时,针对大数据所带来的海量数据要求,还要对传统的数据仓库技术,特别是数据传输方式ETL(提取、转换和加载)进行流程再造。其次是增强数据挖掘与分析能力,要利用大数据专业工具,建立业务逻辑模型,将大量非结构化数据转化成决策支持信息。三是加强对大数据分析结论的解读和应用能力,关键是要打造一支复合型的大数据专业团队,他们不仅要掌握数理建模和数据挖掘的技术,还要具备良好的业务理解力,并能与内部业务条线进行充分地沟通合作。
(四)加大金融创新力度,设立大数据实验室
可以在金融企业内部专门设立大数据创新实验室,统筹业务、管理、科技、统计等方面的人才与资源,建立特殊的管理体制和激励机制。实验室统一负责大数据方案的制定、实验、评价、推广和升级。每次推行大数据方案之前,实验室都应事先进行单元试验、穿行测试、压力测试和返回检验;待测试通过后,对项目的风险收益作出有数据支撑的综合评估。实验室的另一个任务是对“大数据”进行“大分析”,不断优化模型算法。在“方法论上。
(五)加强风险管控,确保大数据安全。
大数据能够在很大程度上缓解信息不对称问题,为金融企业风险管理提供更有效的手段,但如果管理不善,“大数据”本身也可能演化成“大风险”。大数据应用改变了数据安全风险的特征,它不仅需要新的管理方法,还必须纳入到全面风险管理体系,进行统一监控和治理。为了确保大数据的安全,金融机构必须抓住三个关键环节:一是协调大数据链条中的所有机构,共同推动数据安全标准,加强产业自我监督和技术分享;二是加强与监管机构合作交流,借助监管服务的力量,提升自身的大数据安全水准;三是主动与客户在数据安全和数据使用方面加强沟通,提升客户的数据安全意识,形成大数据风险管理的合力效应。
㈡ 金融行业有哪些领域需要大量运用数据分析
1.宏观经济分析:国内外宏观经济数据分析、政策走势分析、经济形势分析。
2.证券数据分析:通过建立数据模型,分析股票指数数据,预测股票走势。
3.财务报表分析:通过建立分析模型,分析财务状况,关联公司之间的经济往来情况。
4.投资项目评估:多维度分析投资项目,通过数据进行投资决策支持,减少投资风险。
㈢ 金融行业适合使用哪种大数据分析软件
金融行业的数据量比较大,可以试用一下极星大数据分析系统。它是专为大企专业打造的大数据属软件,拥有数据采集、数据存储、数据处理、数据挖掘、数据分析、数据可视化、数据专业算法等强大功能,金融、电力、制造业、石化、燃气、交通等行业都适合。
㈣ 金融行业做数据分析的职业发展和规划如何提高工作能力和价值
数据分析在第一年基本上都是收集,整理编辑一些金融信息,常用的回软件是office和数据答库。
至于提高工作能力,前期就是努力,踏实的工作,没有第二条快速的线路。公司收你,是要你为它做出效益,别的都是空话。
以后的发展,主要是金融分析师。不过未来的发展路线最好还是按照个人的能力偏向比较好,你擅长与人沟通相处并能领导别人,也可以转向管理;或者你亲和力强,也可以做销售。
㈤ 金融数据分析师职业前景怎么样
可以从事的岗位有很多,例如投资咨询顾问、投资银行家、证券交易员、执行总裁、主席、合伙人、主负责人、投资总监、财务总监、会计师、审计师、市场、投资公司经理、证券分析师和固定收益分析师、投资组合经理等
介于每个人的情况都有所不同,以拿CFA从业者的投资分析师为例,为大家普及了金融人的职业发展之路。
一、Analyst(分析员)
投行中的Analyst(分析员)一般都是为各大院校应届生准备的一个2年的program,刚毕业的大学生一般都会从此做起。既然叫做分析师,工作内容不外乎是一些数据分析、行业研究之类的工作,有些需要建立一些初步的模型,包括mergermodel、DCF、LBO等等,然后交给associate进一步review和加工。
研究结束,要使用PPT将研究结果呈现出来,所以这个岗位也会经常用到PPT。当然,作为一个初级岗位,很多情况下还会涉及到很多杂七杂八的事情,总是就是投行工作的基础,也是锻炼人的岗位。
这个岗位一般坚持3年时间久可以得到升迁,大多数金融人也是在这个岗位上开始学习CFA的,有前瞻性的大学生在毕业前就把CFA一级考过了,可以极大的缩短在基层工作的时间,两年甚至很短时间就可以成为Associate,也就是我们要谈的下一个岗位。
二、Associate(副经理)
Associate是比Analyst高一级的职位,要么是从Analyst晋升而来,要么是各金融专业高材生或者CFA持证人之类。作为Analyst的小领导,Associate仍然要做一些分析类的工作,不过是有点技术含量的工作,负责更复杂的建模。Associate还要根据公司或者上级的安排,分配任务,承担administrativework,并且主要负责与客户的沟通。
虽是领导,Associate的工作并不轻松,每天需要加班加点,并对全组工作负责。这个岗位需要一定的金融知识背景,所以很喜欢的MBA或者CFA持证人,即便是只通过了CFA二级考试,也会受到欢迎。通常员工会在此岗位上工作3到4年的时间,然后才能学到足够的本事升到更高的位置上。
三、VP(副总裁或经理)
如果你顺利进入到VP阶段,那么恭喜你已经得到了升华。VP泛指所有高层的副级人物,工作要指导Associate和Analyst,同时也要有一些外部环境的接触。很多CEO忙不过来的工作都会交给VP负责。
VP的工作主要由两大块组成,一是充当projectmanager的角色,当D或MD接到deal的时候,负责executingthedeal,二是计划所有需要的过程和任务分配给associates,并且确保顺利进行。VP同时也是和客户接洽以及联系各个support的人比如accountant、lawyer等等的核心人物。
做到VP不容易,要得到晋升更不容易,行业内VP普遍工作3到15年才有机会晋升,除了经验、能力、运气,各种自我提升也少不得。大部分金融人在这个岗位上努力通过CFA三级考试,提交证书申请,如果已经是CFA持证人,那真是极好的。
四、Director(总经理、董事)
根据投行的规模不同,Director或有或无。Director负责重要的交易比如费用谈判,交易策略和客户会议。还有就是做营销吸引客户。MD工作性质与其近似,不过焦点在重要的客户上。
五、MD(董事总经理)
Director3年左右就会升任MD(董事总经理)。MD级别有很高的业务收益指标以及维护重要客户的责任,参与公司的整体战略及业务方向制定。
MD再往上发展就会去做各个分支的管理人,或者是做CEO。这个时候如果没有一张CFA这样的很嚣张的证书傍身就不合适了。
以上是一个典型的投行职称序列,有些金融机构会设置一些中间职称,比如assistantVP(AVP)即助理VP、seniorVP(SVP)即VP等,唯一不变的是对人能力的要求和证书的要求。
当然,CFA的在职业发展上的帮助不止如此,从职业发展的角度,一张代表了你金融理论过硬、工作经验丰富的CFA证书,能帮你优雅地、高效地达成目标。现在vc/pe是一个很时髦的词,国内也出现了很多风投成功的案例,想进入风投圈或者私募圈的金融人不在少数,如果没有一张高含金量的CFA证书,恐怕连门槛都进不去呢。
㈥ 金融数据分析师是什么在金融行业什么地位
金融分析师的工作内容是:培育专业的机构投资人;对开放式基金进行管理以内及创业板市场的设立与运容作;保险基金和养老基金的管理;商业银行股份化和资产证券化运作;股票指数、期货分析以及风险资金管理等。
金融分析师的工作也包括:收集研究对象信息,对其产品进行分析研究,提供分析研究及投资价值报告;跟踪研究对象变化情况,及时动态判断所研究对象的投资价值变化情况,作出投资预期回报与风险分析,调整投资操作建议;对公开发行的各种理财产品的设计、谈判、签约发行及维护;通过各种联络方式开发新客户,与老客户保持联系;负责完成金融产品开户订单,解答客户各项问题;及时反馈客户意见,把握市场动向。
㈦ 大四毕业想应聘银行或金融单位的数据分析岗需要学习什么
数据分析师职位具有鲜明的时代特点和巨大的需求,在大学本科阶段统计专业积极探索培养大学生的数据分析能力,进而为社会提供合格的数据分析师人才的有效对策,具有重要的研究价值和实践意义。
一、数据分析师培养的意义
(一)数据分析师的培养符合国家战略
为适应世界经济一体化的进程,彻底改变我国“项目数据分析”专业技术人才紧缺的现状,2005 年 4 月,全国第一家数据分析事务所在陕西成立,到目前,我国相继已有北京、陕西、江苏、新疆、甘肃、山东、浙江、上海、黑龙江等 14 个省、市、自治区约 80 家项目数据分析专业机构进入中国市场经济舞台,涉及项目已从最初的分析评估业和金融业,扩展至会计师、投融资机构、政府审批和企业管理等众多领域。随着大数据时代的来临,构建大数据研究平台、整合创新资源、实施“专项计划”等成为各个省市的工作重点之一。
(二)数据分析师的就业前景光明
在被视为“数据元年”的今天,数据分析师以待遇优厚和地位尊崇而闻名国际,曾被Times时代杂志誉为“21世纪最热门五大新兴行业”。今天,国内数据分析行业专业人才每年以千位数非速增长着,同期各行业领域空缺岗位已达近二十万,未来中国对数据分析师的需求更是呈井喷之势。
在数据分析人才培养上,国外已经将数据分析师人才作为国家战略。据统计,目前世界 500 强企业中,有90% 以上建立了数据分析部门。大数据时代对数据分析师的巨大需求也大大刺激了高等院校的培养热情。
二、数据分析师职业素养的培养
通过对各大招聘网站数据分析师、市场调查分析师等职位招聘信息的搜集整理和深入分析,挖掘并归纳出社会用人单位对数据分析师职位的知识技能和道德素质等方面的具体要求如下:
(一)数据分析师的职业内涵
数据分析师是指在不同行业中,专门从事数据搜集、整理、分析,并依据数据做出行业或市场研究、评估和预测的专业人员;是以实际数据为依据,对项目现状及远期进行统计、分析、预测并转化为决策信息的专业人才。数据分析师可以通过掌握的大量行业数据,运用科学的计算工具,将经济学原理与数学模型结合,进行科学合理的定量分析,数据分析师可以预测企业未来的收益及风险,为企业经营决策提供科学量化分析的依据。
目前数据分析师的认证主要有 2个:一是注册数据分析师(CDA),由CDA注册数据分析师协会Certified Data Analyst Institute)在顺应大数据、云计算的潮流下发起成立的职业简称;二是项目数据分析师(CPDA),由中国商业联合会数据分析专业委员会以及工信部教育考试中心共同考核认证,证书是申请成立项目数据分析事务所的必备条件之一。
(二)数据分析师的知识要求
掌握多元统计分析、应用回归分析、时间序列分析、计量经济学、经济预测研究等统计建模方法,了解本行业统计方法的新进展;掌握 SQL/oracle 等数据库的数据整理、查询、提取等方法;熟练使用相关的统计软件,准确解读软件的运行结果;了解相关行业的业务知识和数据构成。
(三)数据分析师的能力要求
对信息、数据敏感,具备较强的文字功底,能独立撰写研究报告;能熟练使用 SPSS/SAS/Eviews 等统计分析软件,具备数据分析或数据挖掘的综合能力;掌握数据库体系结构及数据架构,具备 Excel/SQL 或 Access 的查询语句运用技能与知识,有良好的数据处理、建立统计模型能力。
(四)数据分析师的岗位职责
承担行业、企业有关信息、数据的调查、搜集、整理、分析研究和发布工作;参与专项研究、课题和调研咨询项目,撰写行业分析文章和研究报告;对大数据进行深入挖掘,建立相关模型进行预测、分析,找出相关的联系,揭示内在规律,为行业、企业决策提供依据。
以上是小编为你整理到的一些资料,希望对你有所帮助~~
㈧ 金融行业有哪些领域需要运用数据分析
您好,我也是金融行业的,之前在做数据采集和分析的时候也是找了很多方法,后内来是找的前嗅,他们公容司自己的数据分析系统,还是很好用的,你不妨试试,他是从几方面给我分析的:
1.宏观经济分析:国内外宏观经济数据分析、政策走势分析、经济形势分析。
2.证券数据分析:通过建立数据模型,分析股票指数数据,预测股票走势。
3.财务报表分析:通过建立分析模型,分析财务状况,关联公司之间的经济往来情况。
4.投资项目评估:多维度分析投资项目,通过数据进行投资决策支持,减少投资风险。
希望对你有用。