导航:首页 > 经济学法 > 浅析计量经济学

浅析计量经济学

发布时间:2020-12-08 12:42:15

⑴ 求计量经济学论文

本文利用我国1995年以来的统计数字建立了可以通过各种检验的城镇居民储蓄率的模型,对我国城镇居民储蓄存款情况进行实证分析。通过对该模型的经济含义分析得出各种主要因素对我国城镇居民储蓄存款数量的影响程度,并针对我国城镇居民存款储蓄现状提出自己的一些建议。
一、问题的提出
1995年以来,随着我国国民经济的飞速发展,我国的居民储蓄也出现高速增长的态势。进入2000年代以后.我国居民储蓄存款余额始终保持在两位数的增长速度。我国居民储蓄存款持续增长这一经济现象引起国内理论界的广泛关注。这对我国经济的进一步增长有着有利的一面,但也会带来一定的负面影响。所以国家相继出台了一系列积极的财政和货币政策,以刺激国内消费和投资需求,分流储蓄,但是居民储蓄依然持续增加。由于居民的储蓄存款直接影响着居民的消费行为,影响着货币的供给量,进而间接影响着国家经济的发展,宏观调控的力度和效果,因此,对我国居民存款储蓄问题的深入研究就显得尤为重要,这有助于帮助大家认清现状,做出合理的决策。虽然我们作为本科阶段的学生对这个问题的理解和研究还不够深入和透彻,但对此问题的探索有利于我们更好的掌握专业知识,了解国情。
二、文献综述
我国有很多学者建立了许多的储蓄模型来分析各因素对居民储蓄的影响程度,但分析结论的差异很大。整理以前的研究成果,一个社会的储蓄总量受很多因数的影响,根据经典西方宏观经济学理论,储蓄水平主要受收入因数、利息率、物价水平、收入分配等因数的影响:
1.收入因数
收入是决定储蓄的重要因数,收入的变化会直接决定着储蓄的变化。在其他条件不变的情况下,储蓄与可支配收入之间存在着正方向的变化关系,即居民的可支配收入增加,储蓄量增加;个人可支配收入减少,储蓄量减少。可支配收入是指居民户在支付个人所得税之后,余下的全部实际现金收入。
2.利息率
传统经济学认为,在收入即定的条件下,较高的利息率会使储蓄增加。在本文中,我们选用的利息率是根据当年变动月份加权平均后的一年期储蓄存款加权利率。
3.物价水平
本文用通货膨胀率来考察物价水平对储蓄率的影响。
4.收入分配
凯恩斯认为,收入分配的均等化程度越高,社会的平均消费倾向就会越高,社会的储蓄倾向就会越低。在国际上,衡量收入分配平均状况最常用的指数是基尼系数。
三、变量的选取及分析
目前我国正处于改革时期,各种不确定性因素很多。因而,要分析各种因素对中国居民储蓄行为的影响,必须立足于中国的国情。1998年后,中国经济运行进入了一种新的体制约束状态,出现了明显的供给过剩,需求对经济增长的约束与拉动作用明显增强,投资、消费膨胀的内在动力明显不足;同时,由于我国市场机制尚不健全,市场经济发育不成熟,市场体制的控制力还有限,从而不能形成一种有效地传导机制。市场化的改革对人们的经济行为、心理行为带来了很大影响,银行开始考虑贷款风险,投资者开始考虑投资回报,而消费者也开始考虑最佳的消费时机和预期收入。这说明,我们的微观经济层面已生长出一种内在的约束机制,然而社会各个方面对这些积极的因素还很不适应,微观主体内在约束机制较强与宏观经济市场传导机制不畅之间的矛盾,导致了投资行为受阻、消费行为审慎和储蓄持续稳定增长。当前影响我国居民储蓄的因素有很多,概括起来有以下几点:居民对社会经济形势的预期、可选择的投资渠道、信贷消费的发展、利率因素的影响、"假性"存款的影响、消费领域的信用等级、高收入阶层消费状况、就业形势压力、体制改革、居民收入水平等。
由于我现在的时间和能力有限,只能综合考虑,选取一部分变量进行研究,而且为了方便查找数据,只建立我国城镇居民储蓄存款模型进行研究。本文选用当年的收入增长率来考察收入因数对储蓄率的影响。用城镇居民的储蓄率作为被解释变量。另外还选取了中国1995年到2008年的各年的城镇居民收入的基尼系数、一年期储蓄利率和通货膨胀率作为解释变量。
四、数据及处理
本文模型数据样本为从1995-2008年。
年份 城镇居民储蓄率 城镇居民收入增长率 一年期储蓄利率 通货膨胀率 城镇居民基尼系数
1995 0.301 0.228 7.56 0.053 0.27
1995 0.319 0.311 9.26 0.131 0.3
1996 0.424 0.397 10.98 0.216 0.28
1999 0.448 0.261 10.98 0.147 0.28
2000 0.409 0.198 9.21 0.061 0.29
2003 0.309 0.127 7.17 0.007 0.3
2004 0.257 0.108 5.02 -0.026 0.295
2005 0.212 0.134 2.89 -0.029 0.3
2006 0.123 0.125 2.25 -0.015 0.32
2007 0.241 0.143 2.25 -0.007 0.33
2008 0.298 0.173 2.03 -0.013 0.319
注:Y代表城镇居民储蓄率
X1代表城镇居民收入增长率
X2代表一年期储蓄利率
X3代表通货膨胀率
X4代表城镇居民基尼系数
五、模型及处理
基于以上数据,建立的模型是:
Y=β1+β2X1+β3X2+β4X3+β5X4+u
β1度量了截距项,它表示在没有收入的时候人们也要花钱消费,储蓄率为负。
β2度量了当城镇个人可支配收入率变动1%时,储蓄增长率的变动。
β3度量了当利率变动一个单位,其实也就是1%时,储蓄的增量的变动。
β4度量了当通货膨胀率变动一个单位,储蓄增量的变动。
β5度量了基尼系数对储蓄率的影响。这也是本文的重点变量。
u是随机误差项。
对Y做回归
利用eviews最小二乘估计结果如下
Variable Coefficient Std. Error t-Statistic Prob.
C -0.264 0.045 -5.813 0.000
X1 0.317 0.175 1.806 0.087
X2 0.024 0.003 6.523 0.000
X3 0.024 0.205 0.119 0.906
X4 1.127 0.149 7.551 0.000
R-squared 0.897971 Mean dependent var 0.234065
Adjusted R-squared 0.875298 S.D. dependent var 0.116109
S.E. of regression 0.041002 Akaike info criterion -3.360748
Sum squared resid 0.03026 Schwarz criterion -3.113901
Log likelihood 43.64860 F-statistic 39.60525
Durbin-Watson stat 1.541473 Prob(F-statistic) 0.000000
根据以上结果,初步得出的模型为
Y=-0.264646+0.317426X1+0.024054X2 +0.024476X3+1.127523X4.
1.经济意义的检验
该模型可以通过初步的经济意义的检验,系数的符号符合经济理论。
2.统计检验
从表中可以看出,显然通货膨胀率的系数通不过T检验,R2=0.897971, 2值为0.875298,模型的拟合情况较好。F检验的值为39.60525,整个模型对储蓄率的增长影响是显著的。
3.多重共线性的检验
从F值可知此模型整体显著,但是分析各个变量后发现X1和X3不显著,可能存在多重共线性,运用消除多重共线性的逐步回归方法我们可以得到要放弃X3 这个变量,重新做回归分析得到:
Y=β1+β2X1+β3X2+β5X4+u
Variable Coefficient Std. Error t-Statistic Prob.
C -0.271487 0.041322 -6.570056 0.0000
X1 0.314787 0.113799 2.766177 0.0119
X2 0.024487 0.003178 7.704986 0.0000
X4 1.145280 0.137886 8.305987 0.0000
R-squared 0.897094 Mean dependent var 0.229740
Adjusted R-squared 0.881658 S.D. dependent var 0.115517
S.E. of regression 0.039739 Akaike info criterion -3.461967
Sum squared resid 0.031583 Schwarz criterion -3.265624
Log likelihood 45.54360 F-statistic 58.11739
Durbin-Watson stat 1.556309 Prob(F-statistic) 0.000000
从新模型的整体效果来看,R值和F值都很好,而且各个变量的t统计量也表明各个变量对储蓄率的增长都有显著影响。
因此模型可设为Y= -0.271487+0.314787X1+0.024487X2+1.145280X4
4.最终结果
从上面的计量分析中最后得到我国城镇居民的储蓄存款模型:
Y= -0.271487+0.314787X1+0.024487X2+1.145280X4
(0.041322) (0.113799) (0.003178) (0.137886)
t= (-6.570056) (2.766177) (7.704986) (8.305987)
R2= 0.897094 df=20 F=58.11739 DW=1.556309
六、结论与建议
1.模型的实证分析
城镇居民的收入增长率变化对居民的储蓄率变化的影响还是比较明显的,储蓄率对收入增长率的弹性为0.314, 在其他条件不变的情况下,居民的收入变化1%,储蓄率同方向变化0.314%。
利率变动对实际的储蓄率变动的影响并不是十分的重要,弹性仅为0.024。这方面有很多的原因,其中对未来预期的不确定性是一个很重要的原因,尤其是1998年以后,随着住房、医疗、教育等方面的改革,人们的储蓄倾向受预期的影响更大。这方面从人民银行数次通过降息来调整储蓄量,但是效果并不明显也可以看出来。
基尼系数对储蓄率的影响非常大,弹性达到了1.145。这里可以看出,收入分配的均等程度对储蓄的影响非常明显。这是由于收入高的群体的储蓄倾向要明显的高于收入低的群体。
2.对宏观经济的政策建议
基于基尼系数对储蓄率的很大的影响,因此,国家应该重视对分配领域的调节,加大对低收入的者的转移支付,切合中国实际的对税收领域进行改革,缩小社会的贫富差距:
1)不要"逼"老百姓花钱,而要针对不同收入阶层,采取不同对策,引导居民消费
首先,增加中低收入居民的个人相对收入,在分配政策上进一步缩小收入差距;进行微观层面的改革和合适的福利体系改革,大力提高人们的收入预期;控制教育和医疗费用,降低人们的支出预期,减少公众的焦虑;积极发展消费信贷,尤其是助学贷款,减少人们为教育而储蓄的需要,让其"有钱花"。
其次,引导高收入居民向更高层次的消费过渡,努力提高其消费倾向,增加消费供给,让其"有地方花钱",从而抑制储蓄倾向的进一步提高。
2)不要"逼"老百姓投资,而要不断增加金融创新,努力改善投资环境,刺激居民投资
目前的储蓄高增长主要是由于居民收入的持续增长、消费和投资的增速缓慢、居民手持现金的逐步减少而引起,充分暴露出我国经济架构的严重失衡。因此,必须采取相应的措施缓解储蓄增长的势头,并积极引导储蓄向投资转化:
第一,提供多样化的金融工具,不断开发新的金融产品,大力发展商业保险和社会保险,拓宽居民投资渠道,引导居民储蓄资金的合理分流。
第二,进一步发展和完善股票市场,规范上市公司的市场行为,逐步建立完善的、公开的信息披露制度,增强居民的投资信心。
第三,大力发展债券市场,尤其是企业债券市场,充分发挥债券融资的优势,加大企业从资本市场直接融资的比重。
第四,积极引导民间投资,用新型的融资方式拓宽民间投融资的渠道。稳定发展民营金融机构;建立民间投资退出机制;加强民间投资的信用体系建设。
3.模型的不足
在实际经济活动中,人们的预期对储蓄率的影响是非常明显的。由于这方面的影响很难用数据来描述以及碍于本文作者水平有限,所以本模型没有反映人们的预期对储蓄率的影响。

⑵ 计量经济学在实际中有用吗

金融一般都要学计来量的,其实不源用你会用,可你必须能看懂。如果你将来从事的是行业分析研究等研究岗位,你看不懂计量模型是绝对不行的。另外,有些证券的定价方面也要用到计量,研究市场波动也要用到计量……
只要你计量学得好,可应用的地方很多。希望你喜欢它,因为它确实不怎么好学

⑶ 计量经济学 有什么分析方法

1、最小二乘法

这是最简单的线性回归模型,只要有一个参数、一个误差项就好了。但是它存在很多弊病,比如无法消除内生性(endogeneity)问题,因而经济学界很少直接用它。如果要直接用最小二乘法,需要满足几大假设,条件非常苛刻。

2、工具变量法

工具变量法是现今经济学界很流行的一种计量方法,它采用一种和自变量X无关的外生变量Z来作为一种“工具”,从而解决了内生性的问题。

3、双重差分法

双重差分法用时间和实验、对照组两个维度的变量,进行双重差分,这种方法分析非常有效,不过数据收集量大,对数据质量要求高。


(3)浅析计量经济学扩展阅读:

计量经济学的学习方法:

1、研究对象发生了较大变化

即从研究确定性问题转向非确定性问题,其对象的性质和意义将发生巨大的变化。因此,在方法的思路上、方法的性质上和方法的结果上,都将出现全新的变化。

2、研究方法发生根本变化

计量经济学方法的基础是概率论和数理统计,是一种新的数学形式。学习中要十分注意其基本概念和方法思路的理解和把握,要充分认识其方法与其它数学方法的根本不同之处。

3、研究的结果发生了变化

理论计量经济学和应用‎计量经济学 理论计量经济学(Theoretical Econometrics)以介绍、研究计量经济学的理论与方法为主要内容,侧重于理论与方法的数学证明与推导,与数理统计联系极为密切。

理论计量经济学除了介绍计量经济学模型的数学理论基础和普遍应用的计量经济学模型的参数估计方法与检验方法外,还研究特殊模型的估计方法与检验模型。

参考资料来源:网络—计量经济学

⑷ 有什么好的计量经济学论文题目简单一点的

学术堂整理了十五个计量经济学论文题目供大家进行参考:版

1、中国货市需求函权数实证研究.

2、货币超发的实证研究

3、存款准备金率变化的影响

4、货币需求与通胀关联分析

5、货币需求的弹性分析

6、我国居民消费函数实证分析

7、浙江省居民消费函数变化

8、日元实际汇率长期利率的实证分析

9、欧元实际汇率长期利率的实证分析

10、瑞朗实际汇率长期利率的实证分析

11、利率汇率与外商直接投资

12、利率与通胀的关系实证分析

13、利率与商业银行不良贷款率的波动实证分析

14、利率、租金与房价

15、货币政策、利率传导机制实证分析

⑸ 计量经济学分析论述题

应该是 B不可抄识别方法是这样的:举袭个例子来说,我的方程组里共有有3个不同的变量(因变量+自变量),如果其中一个方程里所缺少的变量等于2(3-1),那么就是恰好识别。如果方程里所缺少的变量大于2,就是过度识别。小于2 就是不可识别。

⑹ 计量经济学的实证分析是什么

假设有两个人正在讨论最低工资法,这是你听到的两种表述:
甲:最低工资法引起了失业
乙:应该提高最低工资
现在不管你是否同意这两种表述,应该注意的是,甲和乙想要做的事情是不同的。甲的说法像一个科学家:他作出了一种关于世界如何运行的表述。乙的说法象一个决策者,他作出了他想要如何改变世界的表述。
一般说来,关于世界的表述有两种类型。一种类型,如甲的表述,是实证的。他们做出关于世界是什么的表述。第二种类型,如乙的表述,是规范的。规范表述是命令性的,他们作出关于世界应该是什么的表述。
实证和规范的主要差别是我们如何判断他们的正确性。从原则上说,我们可以通过检验证据而确认或否定实证表述。
上面几段是经济学书上的解释。当然我是复制别人的。

我个人认为:实证分析就是用实际的、带有普遍性的例子证明一个事物是按照什么规律运行着的;而规范分析则则是通过公理、定理逐渐证明事物应该按照什么规律运行着,但没有或者偏离、正要偏离轨道的运行着。

计量经济学中的实证分析说白了就是运用计量方法,对事物过去的数据进行的一种分析,既然是过去的数据,那就说明肯定用的是普遍的例子而且是实际的例子,所以计量经济学本身就是实证分析的一种方法,用计量经济学方法进行的分析都应该被认为是实证分析。

⑺ 论述计量经济学在经济问题分析中的运用及运用过程

计量经济学在经济问题分析中是非常重要的一个手段和工具,因为我们在面对数据的时候,最基本的一个处理方式就是准确的一个计量

⑻ 计量经济学分析题。

1:ln(y)=3.73+0.39ln(x1)+0.57ln(x2)
2:根据回归结果(表2)p值可知两个自变量在5%显著水平上都是统计显著的,同时也内是符合经济理论的容,汽车产量和建筑业产值的增长率变化与机电行业销售额增长率变化成正向关系。
3。通过比较表1和表2,将选择双对数模型(常弹性模型),原因;1 使用对数形式通常比使用水平值更接近经典线性回归模型的假定。2取对数通常会缩小变量的取值范围,在某些情况下是相当可观的,这就使得估计值对因变量或自变量的一场观测不那么敏感,而且取对数形式,使得任何一个自变量系数具有百分点变化的解释
通过表2不难看出,措施b的效果更明显,建筑业产值每增加1个百分点,会使机电行业销售额提高57个百分点,而措施a 只有39个百分点

⑼ 计量经济学论文

关于我国城镇居民储蓄存款模型的计量经济分析
(我的姓名等信息就省略了啊 呵呵)
内容摘要:本文利用我国1978年以来的统计数字建立了可以通过各种检验的城镇居民储蓄率的模型,对我国城镇居民储蓄存款情况进行实证分析。通过对该模型的经济含义分析得出各种主要因素对我国城镇居民储蓄存款数量的影响程度,并针对我国城镇居民存款储蓄现状提出自己的一些建议。
关键词:居民储蓄存款 实证分析 主要因素
一、问题的提出
1978年以来,随着我国国民经济的飞速发展,我国的居民储蓄也出现高速增长的态势。进入90年代以后.我国居民储蓄存款余额始终保持在两位数的增长速度。我国居民储蓄存款持续增长这一经济现象引起国内理论界的广泛关注。这对我国经济的进一步增长有着有利的一面,但也会带来一定程度的负面影响。所以国家相继出台了一系列积极的财政和货币政策,以刺激国内消费和投资需求,分流储蓄,但是居民储蓄依然持续增加。由于居民的储蓄存款直接影响着居民的消费行为,影响着货币的供给量,进而间接影响着国家经济的发展,宏观调控的力度和效果,因此,对我国居民存款储蓄问题的深入研究就显得尤为重要,这有助于帮助大家认清现状,做出合理的决策。虽然我们作为本科阶段的学生对这个问题的理解和研究还不够深入和透彻,但对此问题的探索有利于我们更好的掌握专业知识,了解国情,提高实际操作水平和理论联系实际、发现问题、分析问题、解决问题的能力。
二、文献综述
我国有很多学者建立了许多的储蓄模型来分析各因素对居民储蓄的影响程度,但分析结论的差异很大。整理以前的研究成果,一个社会的储蓄总量受很多因数的影响,根据经典西方宏观经济学理论,储蓄水平主要受收入因数、利息率、物价水平、收入分配等因数的影响:
1.收入因数
收入是决定储蓄的重要因数,收入的变化会直接决定着储蓄的变化。在其他条件不变的情况下,储蓄与可支配收入之间存在着正方向的变化关系,即居民的可支配收入增加,储蓄量增加;个人可支配收入减少,储蓄量减少。可支配收入是指居民户在支付个人所得税之后,余下的全部实际现金收入。
2.利息率
传统经济学认为,在收入即定的条件下,较高的利息率会使储蓄增加。在本文中,我们选用的利息率是根据当年变动月份加权平均后的一年期储蓄存款加权利率。
3.物价水平
物价水平会导致居民户的消费倾向的改变,从而也就会改变居民户的储蓄倾向。本文用通货膨胀率来考察物价水平对储蓄率的影响。
4.收入分配
凯恩斯认为,收入分配的均等化程度越高,社会的平均消费倾向就会越高,社会的储蓄倾向就会越低。在国际上,衡量收入分配平均状况最常用的指数是基尼系数。
三、变量的选取及分析
目前我国正处于改革时期,各种不确定性因素很多。因而,要分析各种因素对中国居民储蓄行为的影响,必须立足于中国的国情。1998年后,中国经济运行进入了一种新的体制约束状态,出现了明显的供给过剩,需求对经济增长的约束与拉动作用明显增强,投资、消费膨胀的内在动力明显不足;同时,由于我国市场机制尚不健全,市场经济发育不成熟,市场体制的控制力还有限,从而不能形成一种有效地传导机制。市场化的改革对人们的经济行为、心理行为带来了很大影响,银行开始考虑贷款风险,投资者开始考虑投资回报,而消费者也开始考虑最佳的消费时机和预期收入。这说明,我们的微观经济层面已生长出一种内在的约束机制,然而社会各个方面对这些积极的因素还很不适应,微观主体内在约束机制较强与宏观经济市场传导机制不畅之间的矛盾,导致了投资行为受阻、消费行为审慎和储蓄持续稳定增长。当前影响我国居民储蓄的因素有很多,概括起来有以下几点:居民对社会经济形势的预期、可选择的投资渠道、信贷消费的发展、利率因素的影响、"假性"存款的影响、消费领域的信用等级、高收入阶层消费状况、就业形势压力、体制改革、居民收入水平等。
由于我现在的时间和能力有限,只能综合考虑,选取一部分变量进行研究,而且为了方便查找数据,只建立我国城镇居民储蓄存款模型进行研究。本文选用当年的收入增长率来考察收入因数对储蓄率的影响。用城镇居民的储蓄率作为被解释变量。另外还选取了中国1979年到2002年的各年的城镇居民收入的基尼系数、一年期储蓄利率和通货膨胀率作为解释变量。
四、数据及处理
本文模型数据样本为从1979-2002年。
年份 城镇居民储蓄率 城镇居民收入增长率 一年期储蓄利率 通货膨胀率 城镇居民基尼系数
1979 0.06368087 0.264869934 3.78 0.02 0.16
1980 0.08740586 0.220385089 5.04 0.059804 0.15
1981 0.07093626 0.104176446 5.4 0.024052 0.15
1982 0.08105586 0.139165412 5.67 0.01897 0.15
1983 0.09963501 0.093723563 5.76 0.015071 0.16
1984 0.13025584 0.245357008 5.76 0.027948 0.19
1985 0.15161502 0.184241122 6.72 0.08836 0.19
1986 0.17454542 0.280700971 7.2 0.060109 0.2
1987 0.2175453 0.167515864 7.2 0.072901 0.23
1988 0.17862152 0.219728929 7.68 0.185312 0.23
1989 0.2721202 0.199827095 11.12 0.177765 0.23
1990 0.32760614 0.123579703 9.92 0.021141 0.24
1991 0.31032443 0.163667824 7.92 0.028888 0.25
1992 0.3016907 0.228819425 7.56 0.053814 0.27
1993 0.3199061 0.311233327 9.26 0.131883 0.3
1994 0.42486435 0.397210898 10.98 0.216948 0.28
1995 0.44898036 0.261076104 10.98 0.147969 0.28
1996 0.40903477 0.198208003 9.21 0.060938 0.29
1997 0.30935015 0.127739779 7.17 0.007941 0.3
1998 0.25777978 0.108852141 5.02 -0.026 0.295
1999 0.21234608 0.134557035 2.89 -0.02993 0.3
2000 0.1239205 0.125688358 2.25 -0.01501 0.32
2001 0.24155306 0.14364071 2.25 -0.0079 0.33
2002 0.29897822 0.173106495 2.03 -0.01308 0.319
数据来源:各年份的《中国统计年鉴》
注:Y代表城镇居民储蓄率
X1代表城镇居民收入增长率
X2代表一年期储蓄利率
X3代表通货膨胀率
X4代表城镇居民基尼系数
五、模型及处理
基于以上数据,建立的模型是:
Y=β1+β2X1+β3X2+β4X3+β5X4+u
β1度量了截距项,它表示在没有收入的时候人们也要花钱消费,储蓄率为负。
β2度量了当城镇个人可支配收入率变动1%时,储蓄增长率的变动。
β3度量了当利率变动一个单位,其实也就是1%时,储蓄的增量的变动。
β4度量了当通货膨胀率变动一个单位,储蓄增量的变动。
β5度量了基尼系数对储蓄率的影响。这也是本文的重点变量。
u是随机误差项。
对Y做回归
利用eviews最小二乘估计结果如下

Variable Coefficient Std. Error t-Statistic Prob.
C -0.264646 0.045525 -5.813154 0.0000
X1 0.317426 0.175678 1.806864 0.0875
X2 0.024054 0.003688 6.523093 0.0000
X3 0.024476 0.205508 0.119099 0.9065
X4 1.127523 0.149318 7.551127 0.0000
R-squared 0.897971 Mean dependent var 0.234065
Adjusted R-squared 0.875298 S.D. dependent var 0.116109
S.E. of regression 0.041002 Akaike info criterion -3.360748
Sum squared resid 0.030260 Schwarz criterion -3.113901
Log likelihood 43.64860 F-statistic 39.60525
Durbin-Watson stat 1.541473 Prob(F-statistic) 0.000000
根据以上结果,初步得出的模型为
Y=-0.264646+0.317426X1+0.024054X2 +0.024476X3+1.127523X4.
1.经济意义的检验
该模型可以通过初步的经济意义的检验,系数的符号符合经济理论。
2.统计检验
从表中可以看出,显然通货膨胀率的系数通不过T检验,R2=0.897971, 2值为0.875298,模型的拟合情况较好。F检验的值为39.60525,整个模型对储蓄率的增长影响是显著的。
3.多重共线性的检验
从F值可知此模型整体显著,但是分析各个变量后发现X1和X3不显著,可能存在多重共线性,运用消除多重共线性的逐步回归方法我们可以得到要放弃X3 这个变量,重新做回归分析得到:
Y=β1+β2X1+β3X2+β5X4+u

Variable Coefficient Std. Error t-Statistic Prob.
C -0.271487 0.041322 -6.570056 0.0000
X1 0.314787 0.113799 2.766177 0.0119
X2 0.024487 0.003178 7.704986 0.0000
X4 1.145280 0.137886 8.305987 0.0000
R-squared 0.897094 Mean dependent var 0.229740
Adjusted R-squared 0.881658 S.D. dependent var 0.115517
S.E. of regression 0.039739 Akaike info criterion -3.461967
Sum squared resid 0.031583 Schwarz criterion -3.265624
Log likelihood 45.54360 F-statistic 58.11739
Durbin-Watson stat 1.556309 Prob(F-statistic) 0.000000
从新模型的整体效果来看,R值和F值都很好,而且各个变量的t统计量也表明各个变量对储蓄率的增长都有显著影响。
因此模型可设为Y= -0.271487+0.314787X1+0.024487X2+1.145280X4
4.异方差性检验
对新模型进行异方差性的检验,运用white检验,得到如下结果:

White Heteroskedasticity Test:
F-statistic 2.669433 Probability 0.054505
Obs*R-squared 11.50596 Probability 0.073942
Obs*R-squared的计算结果是11.50596,,由于选用的没有交叉乘积项的方式,所以自由度为7,在0.05的显著水平下,查表得 (7)=12.59〉11.50596,所以接受原假设,即该模型不存在异方差性。
5.自相关性的检验
从上表可知DW值为1.556309,且样本容量n=24,有三个解释变量的条件下,给定显著性水平 =0.01,查D-W表得,d =0.882,d =1.407,这时有d <dw=1.556039<4- d ,表明不存在自相关。
6.最终结果
从上面的计量分析中最后得到我国城镇居民的储蓄存款模型:
Y= -0.271487+0.314787X1+0.024487X2+1.145280X4
(0.041322) (0.113799) (0.003178) (0.137886)
t= (-6.570056) (2.766177) (7.704986) (8.305987)
R2= 0.897094 df=20 F=58.11739 DW=1.556309
六、结论与建议
1.模型的实证分析
城镇居民的收入增长率变化对居民的储蓄率变化的影响还是比较明显的,储蓄率对收入增长率的弹性为0.314787, 在其他条件不变的情况下,居民的收入变化1%,储蓄率同方向变化0.314787%。
利率变动对实际的储蓄率变动的影响并不是十分的重要,弹性仅为0.024487。这方面有很多的原因,其中对未来预期的不确定性是一个很重要的原因,尤其是1998年以后,随着住房、医疗、教育等方面的改革,人们的储蓄倾向受预期的影响更大。这方面从人民银行数次通过降息来调整储蓄量,但是效果并不明显也可以看出来。
基尼系数对储蓄率的影响非常大,弹性达到了1.145280。这里可以看出,收入分配的均等程度对储蓄的影响非常明显。这是由于收入高的群体的储蓄倾向要明显的高于收入低的群体。
2.对宏观经济的政策建议
基于基尼系数对储蓄率的很大的影响,因此,国家应该重视对分配领域的调节,加大对低收入的者的转移支付,切合中国实际的对税收领域进行改革,缩小社会的贫富差距:
1)不要"逼"老百姓花钱,而要针对不同收入阶层,采取不同对策,引导居民消费
首先,增加中低收入居民的个人相对收入,在分配政策上进一步缩小收入差距;进行微观层面的改革和合适的福利体系改革,大力提高人们的收入预期;控制教育和医疗费用,降低人们的支出预期,减少公众的焦虑;积极发展消费信贷,尤其是助学贷款,减少人们为教育而储蓄的需要,让其"有钱花"。
其次,引导高收入居民向更高层次的消费过渡,努力提高其消费倾向,增加消费供给,让其"有地方花钱",从而抑制储蓄倾向的进一步提高。
2)不要"逼"老百姓投资,而要不断增加金融创新,努力改善投资环境,刺激居民投资
目前的储蓄高增长主要是由于居民收入的持续增长、消费和投资的增速缓慢、居民手持现金的逐步减少而引起,充分暴露出我国经济架构的严重失衡。因此,必须采取相应的措施缓解储蓄增长的势头,并积极引导储蓄向投资转化:
第一,提供多样化的金融工具,不断开发新的金融产品,大力发展商业保险和社会保险,拓宽居民投资渠道,引导居民储蓄资金的合理分流。
第二,进一步发展和完善股票市场,规范上市公司的市场行为,逐步建立完善的、公开的信息披露制度,增强居民的投资信心。
第三,大力发展债券市场,尤其是企业债券市场,充分发挥债券融资的优势,加大企业从资本市场直接融资的比重。
第四,积极引导民间投资,用新型的融资方式拓宽民间投融资的渠道。稳定发展民营金融机构;建立民间投资退出机制;加强民间投资的信用体系建设。
3.模型的不足
在实际经济活动中,人们的预期对储蓄率的影响是非常明显的。由于这方面的影响很难用数据来描述以及碍于本文作者水平有限,所以本模型没有反映人们的预期对储蓄率的影响。

参考文献
1.何德旭:10万亿储蓄的多视角分析[N]。金融时报,2003-05-19.
2.屈宏斌:居民储蓄高增长堪忧[N]。经济观察报, 2003-03-31.
3.张锐:高储蓄挑战宏观政策[N]。世纪经济报道, 2003-04-29.
4.郭树清:深化投融资体制改革与完善货币政策传导机制[J].金融研究,2002,(2)。
5.武少俊:强化消费需求启动措施,保证经济持续快速增长[J].金融研究,2003,(5)
6.潘雅琼:我国城乡居民储蓄存款余额的趋势预测[J].统计与决策,2003(6)
7.刘隽亭,乔瑞红:我国居民储蓄持续增长的原因及特点分析[J].天津商学院学报,2005(2)
8.李焰:关于利率与我国居民储蓄关系的探讨[J].经济研究,1999(11)
9.韩汉君:中国的居民储蓄存款及其利率弹性[J].上海经济研究,1999(9)
10.庞皓:计量经济学.科学出版社,2008-1

⑽ 如何用计量经济学方法分析影响因素大小

一、理论模型的设计对所要研究的经济现象进行深入的分析,根据研究的目的,选择模型中将包含的因素,根据数据的可得性选择适当的变量来表征这些因素,并根据经济行为理论和样本数据显示出的变量间的关系,设定描述这些变量之间关系的数学表达式,即理论模型。例如上节中的生产函数就是一个理论模型。理论模型的设计主要包含三部分工作,即选择变量、确定变量之间的数学关系、拟定模型中待估计参数的数值范围。1.确定模型所包含的变量在单方程模型中,变量分为两类。作为研究对象的变量,也就是因果关系中的“果”,例如生产函数中的产出量,是模型中的被解释变量;而作为“原因”的变量,例如生产函数中的资本、劳动、技术,是模型中的解释变量。确定模型所包含的变量,主要是指确定解释变量。可以作为解释变量的有下列几类变量:外生经济变量、外生条件变量、外生政策变量和滞后被解释变量。其中有些变量,如政策变量、条件变量经常以虚变量的形式出现。严格他说,上述生产函数中的产出量、资本、劳动、技术等,只能称为“因素”,这些因素间存在着因果关系。为了建立起计量经济学模型,必须选择适当的变量来表征这些因素,这些变量必须具有数据可得性。于是,我们可以用总产值来表征产出量,用固走资产原值来表征资本,用职工人数来表征劳动,用时间作为一个变量来表征技术。这样,最后建立的模型是关于总产值、固定资产原值、职工人数和时间变量之间关系的数学表达式。下面,为了叙述方便,我们将“因素”与“变量”间的区别暂时略去,都以“变量”来表示。关键在于,在确定了被解释变量之后,怎样才能正确地选择解释变量。首先,需要正确理解和把握所研究的经济现象中暗含的经济学理论和经济行为规律。这是正确选择解释变量的基础。例如,在上述生产问题中,已经明确指出属于供给不足的情况,那么,影响产出量的因素就应该在投入要素方面,而在当前,一般的投入要素主要是技术、资本与劳动。如果属于需求不足的情况,那么影响产出量的因素就应该在需求方面,而不在投入要素方面。这时,如果研究的对象是消费品生产,应该选择居民收入等变量作为解释变量;如果研究的对象是生产资料生产,应该选择固定资产投资总额等变量作为解释变量。由此可见,同样是建立生产模型,所处的经济环境不同、研究的行业不同,变量选择是不同的。其次,选择变量要考虑数据的可得性。这就要求对经济统计学有透彻的了解。计量经济学模型是要在样本数据,即变量的样本观测值的支持下,采用一定的数学方法估计参数,以揭示变量之间的定量关系。所以所选择的变量必须是统计指标体系中存在的、有可靠的数据来源的。如果必须引入个别对被解释变量有重要影响的政策变量、条件变量,则采用虚变量的样本观测值的选取方法。第三,选择变量时要考虑所有入选变量之间的关系,使得每一个解释变量都是独立的。这是计量经济学模型技术所要求的。当然,在开始时要做到这一点是困难的,如果在所有入选变量中出现相关的变量,可以在建模过程中检验并予以剔除。从这里可以看出,建立模型的第一步就已经体现了计量经济学是经济理论、经济统计学和数学三者结合的思想。在选择变量时,错误是容易发生的。下面的例子都是从已有的计量经济学应用研究成果中发现的,代表了几类容易发生的错误。例如农副产品出口额=-107.66+0.13×社会商品零售总额十0.22×农副产品收购额这里选择了无关的变量,因为社会商品零售总额与农副产品出口额无直接关系,更不是影响农副产品出口额的原因。再如生产资料进口额=0.73×轻工业投资+0.21×出口额+0.18×生产消费+67.60×进出口政策这里选择了不重要的变量,因为轻工业投资对生产资料进口额虽有影响,但不是重要的,或者说是不完全的,重要的是全社会固定资产投资额,应该选择这个变量。再如农业总产值=0.78+0.24×粮食产量+0.05×农机动力—0.21×受灾面积这里选择了不独立的变量,因为粮食产量是受农机动力和受灾面积影响的,它们之间存在相关性。值得注意的是上述几个模型都能很好地拟合样本数据,所以绝对不能把对样本数据的拟合程度作为判断模型变量选择是否正确的主要标准。变量的选择不是一次完成的,往往要经过多次反复。2.确定模型的数学形式选择了适当的变量,接下来就要选择适当的数学形式描述这些变量之间的关系,即建立理论模型。选择模型数学形式的主要依据是经济行为理论。在数理经济学中,已经对常用的生产函数、需求函数、消费函数、投资函数等模型的数学形式进行了广泛的研究,可以借鉴这些研究成果。需要指出的是,现代经济学尤其注重实证研究,任何建立在一定经济学理论假设基础上的理论模型,如果不能很好地解释过去,尤其是历史统计数据,那么它是不能为人们所接受的。这就要求理论模型的建立要在参数估计、模型检验的全过程中反复修改,以得到一种既能有较好的经济学解释又能较好地反映历史上已经发生的诸变量之间关系的数学模型。忽视任何一方面都是不对的。也可以根据变量的样本数据作出解释变量与被解释变量之间关系的散点图,由散点图显示的变量之间的函数关系作为理论模型的数学形式。这也是人们在建模时经常采用的方法。在某些情况下,如果无法事先确定模型的数学形式,那么就采用各种可能的形式进行试模拟,然后选择模拟结果较好的一种。3.拟定理论模型中待估参数的理论期望值理论模型中的待估参数一般都具有特定的经济含义,它们的数值,要待模型估计、检验后,即经济数学模型完成后才能确定,但对于它们的数值范围,即理论期望值,可以根据它们的经济含义在开始时拟定。这一理论期望值可以用来检验模型的估计结果。拟定理论模型中待估参数的理论期望值,关键在于理解待估参数的经济含义。例如上述生产函数理论模型中有4个待估参数和α、β、γ和A。其中,α是资本的产出弹性,β是劳动的产出弹性,γ近似为技术进步速度,A是效率系数。根据这些经济含义,它们的数值范围应该是于集中的问题。经济变量在时间序列上的变化往往是缓慢的,例如,居民收入每年的变化幅度只有5%左右。如果在一个消费函数模型中,以居民消费作为被解释变量,以居民收入作为解释变量,以它的时间序列数据作为解释变量的样本数据,由于样本数据过于集中,所建立的模型很难反映两个变量之间的长期关系。这也是时间序列不适宜于对模型中反映长期变化关系的结构参数的估计的一个主要原因。四是模型随机误差项的序列相关问题。用时间序列数据作样本,容易引起模型随机误差项产生序列相关。这个问题后面还要专门讨论。截面数据是一批发生在同一时间截面上的调查数据。例如,工业普查数据、人口普查数据、家计调查数据等,主要由统计部门提供。用截面数据作为计量经济学模型的样本数据,应注意以下几个问题。一是样本与母体的一致性问题。计量经济学模型的参数估计,从数学上讲,是用从母体中随机抽取的个体样本估计母体的参数,那么要求母体与个体必须是一致的。例如,估计煤炭企业的生产函数模型,只能用煤炭企业的数据作为样本,不能用煤炭行业的数据。那么,截面数据就很难用于一些总量模型的估计,例如,建立煤炭行业的生产函数模型,就无法得到合适的截面数据。二是模型随机误差项的异方差问题。用截面数据作样本,容易引起模型随机误差项产生异方差。这个问题后面还要专门讨论。虚变量数据也称为二进制数据,一般取0或1。虚变量经常被用在计量经济学模型中,以表征政策、条件等因素。例如,建立我国的粮食生产计量经济学模型,以粮食产量作为被解释变量,解释变量中除了播种面积、化肥使用量、农机总动力、成灾面积等变量外,显然,政策因素是不可忽略的。1980年前后,由于实行了不同的政策,即使上述变量都没有变化,粮食产量也会发生大的变化。于是必须在解释变量中引人政策变量,用一个虚变量表示,对于1980年以后的年份,该虚变量的样本观测值为1,对于1980年以前的年份,该虚变量的样本观测值为0。也可以取0、l以外的数值,表示该因素的变化程度。例如,在工业生产模型中用虚变量表示气候对工业生产的影响,可以将不同年份气候的影响程度,分别用0、1、-1,甚至0.5、-0.5等表示。不过,这种方法应慎用,以免违背客观性。2.样本数据的质量样本数据的质量问题大体上可以概括为完整性、准确性、可比性和一致性四个方面。完整性,即模型中包含的所有变量都必须得到相同容量的样本观测值。这既是模型参数估计的需要,也是经济现象本身应该具有的特征。但是,在实际中,“遗失数据”的现象是经常发生的,尤其在中国,经济体制和核算体系都处于转轨之中。在出现“遗失数据”时,如果样本容量足够大,样本点之间的联系并不紧密的情况下,可以将“遗失数据”所在的样本点整个地去掉;如果样本容量有限,或者样本点之间的联系紧密,去掉某个样本点会影响模型的估计质量,则要采取特定的技术将“遗失数据”补上。准确性,有两方面含义,一是所得到的数据必须准确反映它所描述的经济因素的状态,即统计数据或调查数据本身是准确的;二是它必须是模型研究中所准确需要的,即满足模型对变量口径的要求。前一个方面是显而易见的,而后一个方面则容易被忽视。例如,在生产函数模型中,作为解释变量的资本、劳动等必须是投入到生产过程中的、对产出量起作用的那部分生产要素,以劳动为例,应该是投入到生产过程中的、对产出量起作用的那部分劳动者。于是,在收集样本数据时,就应该收集生产性职工人数,而不能以全体职工人数作为样本数据,尽管全体职工人数在统计上是很准确的,但其中有相当一部分与生产过程无关,不是模型所需要的。可比性,也就是通常所说的数据口径问题,在计量经济学模型研究中可以说无处不在。而人们容易得到的经济统计数据,一般可比性较差,其原因在于统计范围口径的变化和价格口径的变化,必须进行处理后才能用于模型参数的估计。计量经济学方法,是从样本数据中寻找经济活动本身客观存在的规律性,如果数据是不可比的,得到的规律性就难以反映实际。不同的研究者研究同一个经济现象,采用同样的变量和数学形式,选择的样本点也相同,但可能得到相差甚远的模型参数估计结果。为什么?原因在于样本数据的可比性。例如,采用时间序列数据作为生产函数模型的样本数据,产出量用不变价格计算的总产值,在不同年份间是可比的;资本用当年价格计算的固定资产原值,在不同年份间是不可比的。对于统计资料中直接提供的这个用当年价格计算的固定资产原值,有人直接用于模型估计,有人进行处理后再用于模型的估计,结果当然不会相同。一致性,即母体与样本的一致性。上面在讨论用截面数据作为计量经济学模型的样本数据时已经作了介绍。违反一致性的情况经常会发生,例如,用企业的数据作为行业生产函数模型的样本数据,用人均收入与消费的数据作为总量消费函数模型的样本数据,用31个省份的数据作为全国总量模型的样本数据,等等。三、模型参数的估计模型参数的估计方法,是计量经济学的核心内容。在建立了理论模型并收集整理了符合模型要求的样本数据之后,就可以选择适当的方法估计模型,得到模型参数的估计量。模型参数的估计是一个纯技术的过程,包括对模型进行识别(对联立方程模型而言)、估计方法的选择、软件的应用等内容。在后面的章节中将用大量的篇幅讨论估计问题,在此不重复叙述。四、模型的检验在模型的参数估计量已经得到后,可以说一个计量经济学模型已经初步建立起来了。但是,它能否客观揭示所研究的经济现象中诸因素之间的关系,能否付诸应用,还要通过检验才能决定。一般讲,计量经济学模型必须通过四级检验,即经济意义检验、统计学检验、计量经济学检验和预测检验。1.经济意义检验经济意义检验主要检验模型参数估计量在经济意义上的合理性。主要方法是将模型参数的估计量与预先拟定的理论期望值进行比较,包括参数估计量的符号、大小、相互之间的关系,以判断其合理性。首先检验参数估计量的符号。例如,有下列煤炭行业生产模型:煤炭产量=-108.5427+0.00067×固定资产原值+0.01527×职工人数-0.00681×电力消耗量+0.00256×木材消耗量在该模型中,电力消耗量前的参数估计量为负,意味着电力消耗越多,煤炭产量越低,从经济行为上无法解释。模型不能通过检验,应该找出原因重新建立模型。不管其他方面的质量多么高,模型也是没有实际价值的。2.统计检验统计检验是由统计理论决定的,目的在于检验模型的统计学性质。通常最广泛应用的统计检验准则有拟合优度检验、变量和方程的显著性检验等。3.计量经济学检验计量经济学检验是由计量经济学理论决定的,目的在于检验模型的计量经济学性质。通常最主要的检验准则有随机误差项的序列相关检验和异方差性检验,解释变量的多重共线性检验等。4.模型预测检验预测检验主要检验模型参数估计量的稳定性以及相对样本容量变化时的灵敏度,确定所建立的模型是否可以用于样本观测值以外的范围,即模型的所谓超样本特性。具体检验方法为:(1)利用扩大了的样本重新估计模型参数,将新的估计值与原来的估计值进行比较,并检验二者之间差距的显著性;(2)将所建立的模型用于样本以外某一时期的实际预测,并将该预测值与实际观测值进行比较,并检验二者之间差距的显著性。经历并通过了上述步骤的检验后,可以说已经建立了所需要的计量经济学模型,可以将它应用于预定的目的。五、计量经济学模型成功三要素从上述建立计量经济学模型的步骤中,不难看出,任何一项计量经济学研究、任何一个计量经济学模型赖以成功的要素应该有三个:理论、方法和数据。理论,即经济理论,所研究的经济现象的行为理论,是计量经济学研究的基础。方法,主要包括模型方法和计算方法,是计量经济学研究的工具与手段,是计量经济学不同于其他经济学分支学科的主要特征。数据,反映研究对象的活动水平、相互间联系以及外部环境的数据,或更广义讲是信息,是计量经济学研究的原料。这三方面缺一不可。一般情况下,在计量经济学研究中,方法的研究是人们关注的重点,方法的水平往往成为衡量一项研究成果水平的主要依据。这是正常的。计量经济学理论方法的研究是计量经济学研究工作者义不容辞的义务。但是,不能因此而忽视对经济学理论的探讨,一个不懂得经济学理论、不了解经济行为的人,是无法从事计量经济学研究工作的,是不可能建立起一个哪怕是极其简单的计量经济学模型的。所以,计量经济学家首先应该是一个经济学家。相比之下,人们对数据,尤其是数据质量问题的重视更显不足,在申请一项研究项目或评审一项研究成果时,对数据的可得性、可用性、可靠性缺乏认真的推敲;在研究过程中出现问题时,较少从数据质量方面去找原因。而目前的实际情况是,数据已经成为制约计量经济学发展的重要问题。六、相关分析、回归分析和因果分析从上述建立计量经济学模型的步骤中进一步看出,经典计量经济学方法的核心是采用回归分析的方法揭示变量之间的因果关系。但是,变量之间具有相关性并不等于具有因果性。这是建立计量经济学模型中一个十分重要的概念,那么首先需要对相关关系与因果关系作一简要的说明。所谓相关关系,是指两个以上的变量的样本观测值序列之间表现出来的随机数学关系,用相关系数来衡量。如果两个变量样本观测值序列之间相关系数的绝对值为1,则二者之间具有完全相关性(完全正相关或完全负相关);如果相关系数的绝对值比较大,或接近于1,则二者之间具有较强相关性;如果相关系数的绝对值为0,或接近于0,则二者之间不具有相关性。如果一个变量与其他两个或两个以上变量的线性组合之间具有相关性,那么它与每一个变量之间的相关系数称为偏相关系数。相关关系是变量之间所表现出来的一种纯数学关系,判断变量之间是否具有相关关系的依据只有数据。所谓因果关系,是指两个或两个以上变量在行为机制上的依赖性,作为结果的变量是由作为原因的变量所决定的,原因变量的变化引起结果变量的变化。因果关系有单向因果关系和互为因果关系之分。例如,劳动力与国内生产总值之间具有单向因果关系,在经济行为上是劳动力影响国内生产总值,而不是相反;但是,在国内生产总值与消费总额之间则存在经济行为上的互为因果关系,国内生产总值既决定消费总额,反过来又受消费的拉动。具有因果关系的变量之间一定具有数学上的相关关系。而具有相关关系的变量之间并不一定具有因果关系。例如中国的国内生产总值与印度的人口之间具有较强的相关性,因为二者都以较快的速度增长,但显然二者之间不具有因果关系。相关分析是判断变量之间是否具有相关关系的数学分析方法,通过计算变量之间的相关系数来实现。回归分析也是判断变量之间是否具有相关关系的一种数学分析方法,它着重判断一个随机变量与一个或几个可控变量之间是否具有相关关系。由于它的特定的功能,所以也被用来进行变量之间的因果分析。但是,仅仅依靠回归分析尚不能对变量之间的因果关系作出最后判断,必须与经济行为的定性分析相结合。这就是上面强调的建立计量经济学模型的三要素。

阅读全文

与浅析计量经济学相关的资料

热点内容
中天高科国际贸易 浏览:896
都匀经济开发区2018 浏览:391
辉县农村信用社招聘 浏览:187
鹤壁市灵山文化产业园 浏览:753
国际金融和国际金融研究 浏览:91
乌鲁木齐有农村信用社 浏览:897
重庆农村商业银行ipo保荐机构 浏览:628
昆明市十一五中药材种植产业发展规划 浏览:748
博瑞盛和苑经济适用房 浏览:708
即墨箱包贸易公司 浏览:720
江苏市人均gdp排名2015 浏览:279
市场用经济学一览 浏览:826
中山2017年第一季度gdp 浏览:59
中国金融证券有限公司怎么样 浏览:814
国内金融机构的现状 浏览:255
西方经济学自考论述题 浏览:772
汽车行业产业链发展史 浏览:488
创新文化产业发展理念 浏览:822
国际贸易开题报告英文参考文献 浏览:757
如何理解管理经济学 浏览:22