Ⅰ 统计学中t值p值是什么意思怎么计算
1、t指的是复T检验,亦称student t检验(Student's t test),制主要用于样本含量较小(n<30),总体标准差σ未知的正态分布资料。
计算:t的检验是双侧检验,只要T值的绝对值大于临界值就是不拒绝原假设。
2、P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。
计算:概率定义为:P(A)=m/n,其中n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。
统计学是关于认识客观现象总体数量特征和数量关系的科学。它是通过搜集、整理、分析统计资料,认识客观现象数量规律性的方法论科学。由于统计学的定量研究具有客观、准确和可检验的特点,所以统计方法就成为实证研究的最重要的方法,广泛适用于自然、社会、经济、科学技术各个领域的分析研究。
Ⅱ 关于统计学,这里的p值是怎么计算出来的呢谢谢!
p
值即概率,反映某一事件发生的可能性大小.统计学根据显著性检验方法所得到的p
值,一般以p
<
0.05
为显著,p
f,也可写成pr(
>f),p
=
p{
f0.05
>
f}或p
=
p{
f0.01
>
f}.下面的内容列出了p值计算方法.(1)
p值是:1)
一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率.2)
拒绝原假设的最小显著性水平.3)
观察到的(实例的)
显著性水平.4)
表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法.(2)
p
值的计算:一般地,用x
表示检验的统计量,当h0
为真时,可由样本数据计算出该统计量的值c
,根据检验统计量x
的具体分布,可求出p
值.具体地说:左侧检验的p
值为检验统计量x
小于样本统计值c
的概率,即
=
p{
x
<
c}
右侧检验的p
值为检验统计量x
大于样本统计值c
的概率
=
p{
x
>
c}
双侧检验的p
值为检验统计量x
落在样本统计值c
为端点的尾部区域内的概率的2
倍:p
=
2p{
x
>
c}
(当c位于分布曲线的右端时)
或p
=
2p{
x<
c}
(当c
位于分布曲线的左端时)
.若x
服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其p
值可表示为p
=
p{|
x|
>
c}
.计算出p
值后,将给定的显著性水平α与p
值比较,就可作出检验的结论:如果α
>
p
值,则在显著性水平α下拒绝原假设.如果α
≤
p
值,则在显著性水平α下接受原假设.在实践中,当α
=
p
值时,也即统计量的值c
刚好等于临界值,为慎重起见,可增加样本容量,重新进行抽样检验.整理自:樊冬梅,假设检验中的p值.郑州经济管理干部学院学报,2002,韩志霞,张玲,p
值检验和假设检验.边疆经济与文化,2006中国航天工业医药,1999
p值是怎么来的
从某总体中抽
⑴、这一样本是由该总体抽出,其差别是由抽样误差所致;
⑵、这一样本不是从该总体抽出,所以有所不同.如何判断是那种原因呢?统计学中用显著性检验赖判断.其步骤是:⑴、建立检验假设(又称无效假设,符号为h0):如要比较a药和b药的疗效是否相等,则假设两组样本来自同一总体,即a药的总体疗效和b药相等,差别仅由抽样误差引起的碰巧出现的.⑵、选择适当的统计方法计算h0成立的可能性即概率有多大,概率用p值表示.⑶、根据选定的显著性水平(0.05或0.01),决定接受还是拒绝h0.如果p>0.05,不能否定“差别由抽样误差引起”,则接受h0;如果p<0.05或p
<0.01,可以认为差别不由抽样误差引起,可以拒绝h0,则可以接受令一种可能性的假设(又称备选假设,符号为h1),即两样本来自不同的总体,所以两药疗效有差别.统计学上规定的p值意义见下表
p值
碰巧的概率
对无效假设
统计意义
p>0.05
碰巧出现的可能性大于5%
不能否定无效假设
两组差别无显著意义
p<0.05
碰巧出现的可能性小于5%
可以否定无效假设
两组差别有显著意义
p
<0.01
碰巧出现的可能性小于1%
可以否定无效假设
两者差别有非常显著意义
理解p值,下述几点必须注意:⑴p的意义不表示两组差别的大小,p反映两组差别有无统计学意义,并不表示差别大小.因此,与对照组相比,c药取得p<0.05,d药取得p<0.01并不表示d的药效比c强.⑵
p>0.05时,差异无显著意义,根据统计学原理可知,不能否认无效假设,但并不认为无效假设肯定成立.在药效统计分析中,更不表示两药等效.哪种将“两组差别无显著意义”与“两组基本等效”相同的做法是缺乏统计学依据的.⑶统计学主要用上述三种p值表示,也可以计算出确切的p值,有人用p
<0.001,无此必要.⑷显著性检验只是统计结论.判断差别还要根据专业知识.样所得的样本,其统计量会与总体参数有所不同,这可能是由于两种原因
Ⅲ 统计学中的P值怎样计算
P值的计算公式抄是
=2[1-Φ(z0)] 当被测假袭设H1为 p不等于p0时;
=1-Φ(z0) 当被测假设H1为 p大于p0时;
=Φ(z0) 当被测假设H1为 p小于p0时;
总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要根据P值的大小和实际问题来解决。
(3)计量经济学p值怎么求扩展阅读
统计学中回归分析的主要内容为:
1、从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。
2、对这些关系式的可信程度进行检验。
3、在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量加入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。
4、利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。
Ⅳ 统计P值是什么,怎么算
P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。
总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。
计算:
为理解P值的计算过程,用Z表示检验的统计量,ZC表示根据样本数据计算得到的检验统计量值。
1、左侧检验
(4)计量经济学p值怎么求扩展阅读
美国统计协会公布了P值使用的几大准则:
准则1:P值可以表达的是数据与一个给定模型不匹配的程度
这条准则的意思是说,我们通常会设立一个假设的模型,称为“原假设”,然后在这个模型下观察数据在多大程度上与原假设背道而驰。P值越小,说明数据与模型之间越不匹配。
准则2:P值并不能衡量某条假设为真的概率,或是数据仅由随机因素产生的概率。
这条准则表明,尽管研究者们在很多情况下都希望计算出某假设为真的概率,但P值的作用并不是这个。P值只解释数据与假设之间的关系,它并不解释假设本身。
准则3:科学结论、商业决策或政策制定不应该仅依赖于P值是否超过一个给定的阈值。
这一条给出了对决策制定的建议:成功的决策取决于很多方面,包括实验的设计,测量的质量,外部的信息和证据,假设的合理性等等。仅仅看P值是否小于0.05是非常具有误导性的。
准则4:合理的推断过程需要完整的报告和透明度。
这条准则强调,在给出统计分析的结果时,不能有选择地给出P值和相关分析。举个例子来说,某项研究可能使用了好几种分析的方法。
而研究者只报告P值最小的那项,这就会使得P值无法进行解释。相应地,声明建议研究者应该给出研究过程中检验过的假设的数量,所有使用过的方法和相应的P值等。
准则5:P值或统计显著性并不衡量影响的大小或结果的重要性。
这句话说明,统计的显著性并不代表科学上的重要性。一个经常会看到的现象是,无论某个效应的影响有多小,当样本量足够大或测量精度足够高时,P值通常都会很小。反之,一些重大的影响如果样本量不够多或测量精度不够高,其P值也可能很大。
准则6:P值就其本身而言,并不是一个非常好的对模型或假设所含证据大小的衡量。
简而言之,数据分析不能仅仅计算P值,而应该探索其他更贴近数据的模型。
声明之后还列举出了一些其他的能对P值进行补充的分析方手段,比如置信区间,贝叶斯方法,似然比,FDR(False Discovery Rate)等等。这些方法都依赖于一些其他的假定,但在一些特定的问题中会比P值更为直接地回答诸如“哪个假定更为正确”这样的问题。
声明最后给出了对统计实践者的一些建议:好的科学实践包括方方面面,如好的设计和实施,数值上和图形上对数据进行汇总,对研究中现象的理解,对结果的解释,完整的报告等等——科学的世界里,不存在哪个单一的指标能替代科学的思维方式。
Ⅳ 计量经济学中,给出F值和F的p值,怎么判断x对y的影响。求大神解答,谢谢。
首先看格兰杰来因果关系检验,源x对y有影响,表现为X各滞后项前的参数整体不为零,而Y各滞后项前的参数整体为零。
格兰杰检验是通过受约束的F检验完成的。原假设前参数整体为零。
题中F值很大,F分布表中最大的也就6106,在1%的显著性水平下。所以可以肯定的说拒绝原假设,所以X2i和X3i对YI的联合影响是显著的,F的p值很小,其表示的是接受原假设的概率为零,所以百分百拒绝原假设,故影响是显著的。另外题中没有说F值是检验单个的,所以AB肯定是错的。
Ⅵ 如何计算P值
假设第一组野生型的患病率是p1,第二组是p2
所以你的原假设就是p1=p2
枢轴变量T = (实际比专例1-实际比例2)/根号(方差属1+方差2) ~ N(0,1) 标准正态分布
实际比例1=36/185
实际比例2=12/65
方差1=实际比例1×(1-实际比例1)/n1=36/185×149/185×1/185=0.0008471
方差2=实际比例2×(1-实际比例2)/n2=12/65×53/65×1/65=0.002316
T=0.1774 查正态分布表得到P值是:2×(1-0.5675)=0.8650 没有差异,完全没有差异
为何×2?因为你的原假设是p1=p2 是双侧检验
Ⅶ 统计学的方差分析表中,p值怎么计算呀有没有公式或者什么
P值的计算公式:
=2[1-Φ(z0)] 当被测假设H1为 p不等于p0时;
=1-Φ(z0) 当被测假设H1为 p大于p0时;
=Φ(z0) 当被测假设H1为 p小于p0时;
其中,Φ(z0)要查表得到。
z0=(x-n*p0)/(根号下(np0(1-p0)))
最后,当P值小于某个显著参数的时候我们就可以否定假设。反之,则不能否定假设。
实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。
(7)计量经济学p值怎么求扩展阅读:
如测量误差造成的差异或个体间的差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。
总偏差平方和 SSt = SSb + SSw。
组内SSw、组间SSb除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。
另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>>MSw(远远大于)。
当控制变量为定序变量时,趋势检验能够分析随着控制变量水平的变化,观测变量值变化的总体趋势是怎样的,是呈现线性变化趋势,还是呈二次、三次等多项式变化。通过趋势检验,能够帮助人们从另一个角度把握控制变量不同水平对观测变量总体作用的程度。
Ⅷ 统计学中的P值应该怎么计算
P值的计算公式是
=2[1-Φ(z0)] 当被测假设H1为 p不等于p0时;专
=1-Φ(z0) 当被测假设H1为 p大于p0时;
=Φ(z0) 当被测假设H1为 p小于p0时;
总之,属P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要根据P值的大小和实际问题来解决。
(8)计量经济学p值怎么求扩展阅读
统计学中回归分析的主要内容为:
1、从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。
2、对这些关系式的可信程度进行检验。
3、在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量加入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。
4、利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。
Ⅸ 计量经济学中P值是什么意思
p值,一般叫"伴随概率",或者significant value。表示参数估计是显著性。一般在5%以下则称参数显著。