1. 大数据在国民经济中起什么作用
无聊
物流在国民经济增长中起到了基础性支撑作用。在国民经济和地区经济中能够发挥带动作用和支持整个国民经济的作用,能够成为国家或地区财政收入的主要来源和创造就业领域,能成为现代科技的应用领域。例如,2008年奥运会对我国国民经济和物流业经济的增长起到了巨大的拉动作用。同时,奥运会对提高中国国民素质、改善投资环境、推动物流业的发展、提高开放度和提升国际形象具有更长远、更持久的积极作用。深刻的理解到了“人文奥运、绿色奥运、科技奥运”三大理念的内涵,还给物流业发展带来进一步扩张的有利环境和机遇。在国民经济持续高速发展的拉动下,我国物流行业保持了快速增长的态势,对经济发展的贡献明显。物流在国民经济中的地位随着物流业的不断发展呈现出越来越重要的作用。其作用主要表现在宏观和微观两个方面。物流在宏观层面上的作用主要表现在:(1)对国民经济的持续、稳定、健康发展的保障作用;(2)对国民经济各行业资源配置的促进作用;(3)对推动经济增长方式转变的作用;(4)对区域经济发展的促进作用;(5)对物流业相关产业快速发展的推动作用。物流在微观层面上的作用主要表现在:(1)降低企业物流成本;(2)实现企业竞争战略;(3)满足消费者多样化需求和增加消费者剩余。
2. 大数据时代的到来对经济学有什么影响
在互联网日益发展壮大后,随即迎来是大数据时代,本人认为,大数据时代对经济学有着双重影响。首先了解一下什么是大数据时代。
最早提出"大数据"时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:"数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。" "大数据"在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。
所以在大数据来临时代,我们应该积极适应,作为企业来说应该重视大数据技术 、培训企业的员工 。所以我认为,大数据时代对经济学只有积极影响,我们应该紧跟时代步伐,积极配合大数据时代,随着大数据时代对经济学的影响,我们应该更加重视经济学,努力学习经济学。
3. 大数据在劳动经济学方面的应用
他出去在劳动经济学方面的应用很多就把比如说你们今年干什么。
4. 你好,在大数据的背景之下,微观经济学要怎么运用去解释一些现实问题呢
1. 大数据的"大"
大数据最显著的特征就是 数据量大 ( large scope ) + 即时性 ( real time data )
比如: 你在超市收银机的数据, 网购的记录, 或者在线阅读( 比如在知乎的关注文章 ) 等等.
同时大数据时代带来了很多新的数据类型 (新在于对比以往经济学上运用的数据)
比如: 社交网络上发的微博或者朋友圈里所包含的文字数据 (这是以往经济分析中不太会使用的)。计量经济中的数据结构经常是矩阵型的, 也就是说通常收集 N 个观察项, K 个变量 (且 K << N)
大数据的数据结构显然不是这样, 很多情况下 K > N
计量中经常假设观察项之间是独立的, 但是在社交网络中观察项之间却是经常互相联结, 计量经济学未来在使用社交网络数据时如何处理这种观察项间的影响将成为一个关键。
2. 目前时髦的大数据应用: 预测建模 ( predictive modeling )
简而言之, 预测建模可以理解为: 已知 N 个观察 通过 K 个预测变量 来推导出相关性最强的 N 个结果。大数据时代数据虽然丰富多了, 但是数据的质量却很容易下降.
比如: 纵使你有全国层次上百万级的观察项, 而你所研究的课题却是在市县层次. 容易造成大量不相关且描述不够详尽的数据.
而且这种统计方法面临一个权衡取舍:
在 K > N 的时候, 模型的样本外预测效果 ( out-of-sample performance ) 就会很差。但是模型的样本内预测效果 (in-sample performance) 会很好.
而当经济学家考虑运用机器学习的方法时, 很容易想到卢卡斯批评( Lucas Critique ): 如果一个预测模型通过收集市场上已知的经济行为, 从而用来预测最优的政府干预政策时, 预测的结果可能并不准确, 因为预测出来的干预政策会改变市场的经济行为( 而这些正是和原模型中相关联的 )
3. 大数据时代已经为实证经济学研究提供了新的思路
美国统计局调查通货膨胀是使用派发问卷的方式, 回收的数据再分类到不同的通货膨胀指标中 (eg CPI). 大数据领域的 Billion Price Project ( BPP ) 运用实时的在线商店数据提供了一种 CPI 的替代指标 (这一指标在美国被验证 BPP 与 CPI 有很强的相关性)。
其他的还有穆迪分析通过 MasterCard 和 Visa 的 Spending Pulse 来提供行业就业率的观测指标.
然而这些大数据还不够完美, 很显然这些数据的样本本身就不具有代表性. 比如: 利用 MasterCard 和 Visa 推导出的就业率指数首先就要求被调查者要至少有一张 MasterCard 或者 Visa。
4. 对经济学家的挑战
数据获取: 公共领域以及政府数据是否容易获得.
数据管理以及编辑能力: 经济学家是否有能力快速的把大数据高效地应用在经济学思想。
最重要的, 急需开发出创新的数据总结, 描述和分析的方法?供参考。
5. 结合实际生活中的具体案例,分析大数据在中国或世界经济中的应用
大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。以下是关于各行各业,不同的组织机构在大数据方面的应用的案例,在此申明,以下案例均来源于网络,本文仅作引用,并在此基础上作简单的梳理和分类。
大数据应用案例之:医疗行业
Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
大数据应用案例之:能源行业
智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。
维斯塔斯风力系统,依靠的是BigInsights软件和IBM超级计算机,然后对气象数据进行分析,找出安装风力涡轮机和整个风电场最佳的地点。利用大数据,以往需要数周的分析工作,现在仅需要不足1小时便可完成。
大数据应用案例之:通信行业
XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取措施,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。
电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。
中国移动通过大数据分析,对企业运营的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。
NTT docomo把手机位置信息和互联网上的信息结合起来,为顾客提供附近的餐饮店信息,接近末班车时间时,提供末班车信息服务。
大数据应用案例之:零售业
"我们的某个客户,是一家领先的专业时装零售商,通过当地的百货商店、网络及其邮购目录业务为客户提供服务。公司希望向客户提供差异化服务,如何定位公司的差异化,他们通过从 Twitter 和 Facebook 上收集社交信息,更深入的理解化妆品的营销模式,随后他们认识到必须保留两类有价值的客户:高消费者和高影响者。希望通过接受免费化妆服务,让用户进行口碑宣传,这是交易数据与交互数据的完美结合,为业务挑战提供了解决方案。"Informatica的技术帮助这家零售商用社交平台上的数据充实了客户主数据,使他的业务服务更具有目标性。
零售企业也监控客户的店内走动情况以及与商品的互动。它们将这些数据与交易记录相结合来展开分析,从而在销售哪些商品、如何摆放货品以及何时调整售价上给出意见,此类方法已经帮助某领先零售企业减少了17%的存货,同时在保持市场份额的前提下,增加了高利润率自有品牌商品的比例。
6. 大数据在经济方面的应用
大数据在经济方面的应用非常广泛,现在也越来越重要,很多人很多人重视到这个数据的应用
7. 大数据应用主要是应用在哪些方面
大数据应用于各个行业包括金融、汽车、餐饮、电信、能源、娱乐等在内的社会各行各业都已经融入了大数据的痕迹。
制造业:利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
金融业:大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
汽车行业:利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
互联网行业:借助于大数据技术分析用户行为,进行商品推荐和针对性广告投放。
餐饮行业:利用大数据实现餐饮O2O模式,彻底改变传统餐饮经营方式。
电信行业:利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。
能源行业:随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
物流行业:利用大数据优化物流网络,提高物流效率,降低物流成本。
城市管理:利用大数据实现智能交通、环保监测、城市规划和智能安防。
生物医学:大数据可以帮助我们实现流行病预测、智慧医疗、健康管理,同时还可以帮助我们解读DNA,了解更多的生命奥秘。
公共安全领域:政府利用大数据技术构建强大的国家安全保障体系,公共安全领域的大数据分析应用,反恐维稳与各类案件分析的信息化手段,借助大数据预防犯罪。
个人生活:大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为轨迹,为其提供更加周到的个性化服务。
大数据的价值远不止于此,大数据对各行各业的渗透,是推动社会生产和生活的核心要素。
(7)大数据在经济学中应用扩展阅读:
大数据的价值体现在以下几个方面:
1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销
2) 做小而美模式的中小微企业可以利用大数据做服务转型
3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值
不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。
著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”这确实是需要警惕的。
参考资料:大数据_网络
8. 如何将“大数据”运用在经济预测领域
首先要明白经济预测的前提是什么?是数据和信息
那么,对于经济预测来说,掌握信息就是掌握以前的规律,开创未来的前提。
目前来说,最为接近的技术就是网络方面的信息采集技术了。
这种采集技术有以下特点:
♦ 对目标网站进行信息自动抓取,支持HTML页面内各种数据的采集,如文本信息,URL,数字,日期,图片等
♦ 用户对每类信息自定义来源与分类
♦ 可以下载图片与各类文件
♦ 支持用户名与密码自动登录
♦ 支持命令行格式,可以Windows任务计划器配合,定期抽取目标网站
♦ 支持记录唯一索引,避免相同信息重复入库
♦ 支持智能替换功能,可以将内容中嵌入的所有的无关部分如广告去除
♦ 支持多页面文章内容自动抽取与合并
♦ 支持下一页自动浏览功能a33lcc乐a思aw
♦ 支持直接提交表单
♦ 支持模拟提交表单
♦ 支持动作脚本
♦ 支持从一个页面中抽取多个数据表
♦ 支持数据的多种后期处理方式
♦ 数据直接进入数据库而不是文件中,因此与利用这些数据的网站程序或者桌面程序之间没有任何耦合