㈠ 计量经济学中的普通最小二乘法(OLS)的4个基本假设条件是什么在线等
1. 解释变量是确定变量,不是随机变量
2. 随机误差项具有零均值、同方差何不序列相关性
3. 随机误差项与解释变量之间不相关
4. 随机误差项服从零均值、同方差、零协方差的正态分布
㈡ 计量经济学中的“OLS”是什么意思
OLS是ordinary least square的简称,意思是普通最小二乘法。普通最小二乘估计就是寻版找参数β1、β2……的估计值,使上式的离差平方权和Q达极小。式中每个平方项的权数相同,是普通最小二乘回归参数估计方法。在误差项等方差、不相关的条件下,普通最小二乘估计是回归参数的最小方差的线性无偏估计。
用这种方法可以算出计量模型中的参数,它是计量经济学中最基本,也是用的最多的方法。计算很复杂,你只要把原理搞清楚就可以了。现在都是将数据输入软件,由程序来计算的。
如果我没有记错的话,这是数学家高斯发明的方法,距今将近两百年历史,这个过程后来经过很多数学家改进。当然也有其局限性,当代的数学家又发明了一些新方法,比OLS要复杂很多。
㈢ 计量经济学中的普通最小二乘法(OLS)的4个基本假设条件是什么
计量经济学中的普通最小二乘法(OLS)的4个基本假设条件分别为:
1、解释变量是确定变量,不是随机变量。
2、随机误差项具有零均值、同方差何不序列相关性。
3、随机误差项与解释变量之间不相关。
4、随机误差项服从零均值、同方差、零协方差的正态分布。
通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
(3)计量经济学试题ols扩展阅读:
在我们研究两个变量(x,y)之间的相互关系时,通常可以得到一系列成对的数据(x1,y1,x2,y2... xm,ym);将这些数据描绘在x -y直角坐标系中,若发现这些点在一条直线附近,可以令这条直线方程。
在回归过程中,回归的关联式不可能全部通过每个回归数据点(x1,y1,x2,y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。
R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]}
m为样本容量,即实验次数;Xi、Yi分别为任意一组实验数据X、Y的数值。
㈣ 计量经济学题库 什么是ols估计
Ordinary Least Square
普通最小二乘