A. 你好,在大数据的背景之下,微观经济学要怎么运用去解释一些现实问题呢
1. 大数据的"大"
大数据最显著的特征就是 数据量大 ( large scope ) + 即时性 ( real time data )
比如: 你在超市收银机的数据, 网购的记录, 或者在线阅读( 比如在知乎的关注文章 ) 等等.
同时大数据时代带来了很多新的数据类型 (新在于对比以往经济学上运用的数据)
比如: 社交网络上发的微博或者朋友圈里所包含的文字数据 (这是以往经济分析中不太会使用的)。计量经济中的数据结构经常是矩阵型的, 也就是说通常收集 N 个观察项, K 个变量 (且 K << N)
大数据的数据结构显然不是这样, 很多情况下 K > N
计量中经常假设观察项之间是独立的, 但是在社交网络中观察项之间却是经常互相联结, 计量经济学未来在使用社交网络数据时如何处理这种观察项间的影响将成为一个关键。
2. 目前时髦的大数据应用: 预测建模 ( predictive modeling )
简而言之, 预测建模可以理解为: 已知 N 个观察 通过 K 个预测变量 来推导出相关性最强的 N 个结果。大数据时代数据虽然丰富多了, 但是数据的质量却很容易下降.
比如: 纵使你有全国层次上百万级的观察项, 而你所研究的课题却是在市县层次. 容易造成大量不相关且描述不够详尽的数据.
而且这种统计方法面临一个权衡取舍:
在 K > N 的时候, 模型的样本外预测效果 ( out-of-sample performance ) 就会很差。但是模型的样本内预测效果 (in-sample performance) 会很好.
而当经济学家考虑运用机器学习的方法时, 很容易想到卢卡斯批评( Lucas Critique ): 如果一个预测模型通过收集市场上已知的经济行为, 从而用来预测最优的政府干预政策时, 预测的结果可能并不准确, 因为预测出来的干预政策会改变市场的经济行为( 而这些正是和原模型中相关联的 )
3. 大数据时代已经为实证经济学研究提供了新的思路
美国统计局调查通货膨胀是使用派发问卷的方式, 回收的数据再分类到不同的通货膨胀指标中 (eg CPI). 大数据领域的 Billion Price Project ( BPP ) 运用实时的在线商店数据提供了一种 CPI 的替代指标 (这一指标在美国被验证 BPP 与 CPI 有很强的相关性)。
其他的还有穆迪分析通过 MasterCard 和 Visa 的 Spending Pulse 来提供行业就业率的观测指标.
然而这些大数据还不够完美, 很显然这些数据的样本本身就不具有代表性. 比如: 利用 MasterCard 和 Visa 推导出的就业率指数首先就要求被调查者要至少有一张 MasterCard 或者 Visa。
4. 对经济学家的挑战
数据获取: 公共领域以及政府数据是否容易获得.
数据管理以及编辑能力: 经济学家是否有能力快速的把大数据高效地应用在经济学思想。
最重要的, 急需开发出创新的数据总结, 描述和分析的方法?供参考。
B. 什么是计量经济学计量经济学方法与
那经济学的方法呢?一定要根据一个数量变量的变化
C. 计量经济学的大数据经济学是什么意思
大数据经济学是在经济学研究和应用中采用大数据并且采用大数据思想对传统经济学进行深化的新兴交叉学科。
大数据经济学不仅要研究如何建模、管理和应用大数据,而且要深入研究传统经济学如何应对大数据带来的挑战并进行改良,大数据经济学需要经济学家、领域专家和信息技术专家等密切合作,对人文社科与 自然科学的跨学科研究提出了更高的要求,并且对整个经济学、社会学、公共管理等将带来革命性变革。
大数据经济学的研究内容
第一,大数据计量经济学 (Big Data Econo—m etrics)。这是和传统计量经济学对应的一个学科,也是大数据经济学下面的子学科。在大数据背景下,经济学建模与分析方法与传统计量经济学完全不同,迫切需要采用全新的思路和方法进行研究。对信息技术专家们而言,大数据经济学仅仅是算法和建模问题,但是如果没有经济学理论指导,没有经济学家的思维,必然会导致研究方向的迷失。一些大数据领域的学者认为 “要相关,不要因果”,这是非常要不得的,传统经济学理论至今仍然到处闪烁着智慧的光芒,对经济现象的深入见解时刻发挥着重要的作用,所以大数据背景下的经济学分析不能主要靠信息技术的建模专家来进行,必须继续依靠大数据计量经济学家。
第二,大数据统计学 (Big Data Statistics)。如前所述,大数据给统计学带来的挑战是革命性的,在某些领域,传统统计学所采用的抽样调查方式必将彻底淘汰。此外,传统统计学所要求的精确数据与数据加工方式可能是画蛇添足甚至败笔之举,人们更加重视对一手数据而不是经过加工过的二手统计数据进行分析。大数据时代,人们更加关注原始数据、关注半结构化甚至非结构化数据,浏览记录、查询关键词、微薄文字、照片等等都是宝贵的数据资源。在大数据时代,传统统计学也必须进行变革,对数据储存手段、处理设备、处理方法都提出了新的要求。
第三,大数据领域经济学。包括大数据生态经济学、大数据环境经济学、大数据金融学、大数据城市经济学、大数据工业经济学、大数据农业经济学、大数据交通经济学、大数据建筑经济学、大数据商业经济学、大数据信息经济学、大数据人口经济学等学科,借用大数据的思想和技术来进行各应用经济领域的研究。
在以上大数据经济学的各学科中,大数据统计学是基础,大数据计量经济学是研究方法,而大数据领域经济学是具体的运用,他们之间存在着密切的共生关系。
大数据由于是基于总体的,很大程度上解决了传统宏观经济学与微观经济学缺乏较强逻辑联系的问题,此外大数据对传统计量经济学带来的一个有益之处就是,结构化的大数据更加接近正态分布,这样 就降低 了小样本假设检验失效问题 。
D. 计量经济学中,对于多元模型而言,SST、SSR、SSE各自的自由度是什么
对于一元线性回归模型,SST有n-1个自由度;SSE有1个自由度;SSR有n-2个自由度。
因为一元线性耽归方程在建立时要求离回归的平方和最小,即根据“最小二乘法”原理来建立回归方程。
回归分析(regression analysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多重线性回归分析。
在统计学中,回归分析(regression analysis)指的是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
在大数据分析中,回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。
多元回归中SST=SSE+SSR公式怎么推导出来,就是“最小二乘法”
计量和统计学中的rss ess 和sse ssr
但是Regression和Error是两个名词他们要用of 或者 from放在后面又因为意思的不同就变成了RSS=SSE ESS=SSR。
供参考。
E. 现在大数据时代,读计量经济学可以从事大数据工作吗
可以。因为计量经济学基础理论课之一数理统计和概率计算,是大数据分析的必需的工具。只要你这门课学的扎实,工作起来会比较得心应手。
F. 计量经济学的数据来源
计量经济学,是结合经济理论与数理统计,并以实际经济数据作定量分析的一门学科。
主要内容包括理论计量经济学和应用经济计量学。理论计量经济学主要研究如何运用、改造和发展数理统计的方法,使之成为随机经济关系测定的特殊方法。应用计量经济学是在一定的经济理论的指导下,以反映事实的统计数据为依据,用经济计量方法研究经济数学模型的实用化或探索实证经济规律。
G. 求问数量经济学的大数据经济方向为什么报录比挺高的
(10272)上海财经大学/(002)经济学院/(020209)数量经济学/(01)计量经济学专业的考试范围:1(101)思想政治理论(201)英语一(301)数学一(801)经济学2(101)思想政治理论(201)英语一(301)数学一(807)实变函数与数理统计(10272)上海财经大学/(002)经济学院/(020209)数量经济学/(02)金融计量经济学专业的考试范围:1(101)思想政治理论(201)英语一(301)数学一(801)经济学(10272)上海财经大学/(002)经济学院/(020209)数量经济学/(03)大数据经济学专业的考试范围:1(101)思想政治理论(201)英语一(301)数学一(801)经济学
H. 大数据时代对统计学和经济学有何影响
济学界追求 casual inference 和 大数据追求的 predictive modeling 被广大经济学家认为有天壤之别, 所以大数据 (或者准确的说 statistical learning方法) 对目前经济学研究, 公共政策指定还没有实质性的帮助. 但是提供了不少实证方面的新思路新方法, 也对计量经济学提出新挑战 ( 社交网络数据 ). 未来障碍一个个突破后, 会有很大的应用.
经济学家是很追求效益的, 对于大的数据库肯定要尽可能的获取好处, 排除坏处. 大数据并不会替代常识, 经济学理论, 以及细致的研究设计. 大数据只会在这些方面进行弥补.
I. 怎样理解计量经济学的重要作用
线性假设是线性模型最基础也是最重要的假设。而之前我们也有提及所谓的简单线性回归也就是指模型仅包含两个变量X和Y。这里的X,Y和观测值并没有关系,只是根据线性模型刻画出的变量之间的关系:Y可以被看作成是一个关于X的单元函数 (比如说小树苗的高度,可以看成是受到施肥量的一个单元函数)。
这一讲比较重要,会涉及一些模型识别的本质,和计量经济的基础概念,可能会讲得比较长一些。我决定把识别估计篇分为两部分,第一部分主要讲识别,第二部分主要讲估计,今天模型识别这一部分主要分为一下几块:
识别的基本概念;
如何理解识别;
存在性;
唯一性;
识别估计篇(一)
识别的概念:
线性假设给模型提供了识别的基础,这里不可避免地我们就要来讲一下识别这个词到底是什么概念。识别这个词可以说是贯穿整个计量经济学的研究,识别这个词许多学过统计的人都有接触过,但是真的问到识别究竟是什么许多人也很难说出一个所以然来,甚至可能许多人会混淆模型“识别”的概念,最常见的两种混淆是:
“模型识别与“模型估计”混淆;
“模型识别”与实证中我们常说的“因果识别”混淆;
“模型识别”究竟是什么?在数理统计中,一旦我们对所观测到的现象建立了概率参数模型,参数模型一旦确定,我们就可以判断模型是否“可识别”。而这里所谓的“可识别”,指的就是不可能存在两组不同的参数使得在两组不同的参数下,我们观察到“等价”的观测值。