㈠ 大數據怎樣影響著金融業
大數據可以挖掘和分析金融信息深層次的內容,使決策者能夠把握重點,引導戰略方向。
正在來臨的大數據時代,金融機構之間的競爭將在網路信息平台上全面展開,說到底就是「數據為王」。誰掌握了數據,誰就擁有風險定價能力,誰就可以獲得高額的風險收益,最終贏得競爭優勢。
中國金融業正在步入大數據時代的初級階段。經過多年的發展與積累,目前國內金融機構的數據量已經達到100TB以上級別,並且非結構化數據量正在以更快的速度增長。金融機構行在大數據應用方面具有天然優勢:一方面,金融企業在業務開展過程中積累了包括客戶身份、資產負債情況、資金收付交易等大量高價值密度的數據,這些數據在運用專業技術挖掘和分析之後,將產生巨大的商業價值;另一方面,金融機構具有較為充足的預算,可以吸引到實施大數據的高端人才,也有能力採用大數據的最新技術。
總體看,正在興起的大數據技術將與金融業務呈現快速融合的趨勢,給未來金融業的發展帶來重要機遇。
首先,大數據推動金融機構的戰略轉型。在宏觀經濟結構調整和利率逐步市場化的大環境下,國內金融機構受金融脫媒影響日趨明顯,表現為核心負債流失、盈利空間收窄、業務定位亟待調整。業務轉型的關鍵在於創新,但現階段國內金融機構的創新往往淪為監管套利,沒有能夠基於挖掘客戶內在需求,提供更有價值的服務。而大數據技術正是金融機構深入挖掘既有數據,找准市場定位,明確資源配置方向,推動業務創新的重要工具。
其次,大數據技術能夠降低金融機構的管理和運行成本。通過大數據應用和分析,金融機構能夠准確地定位內部管理缺陷,制訂有針對性的改進措施,實行符合自身特點的管理模式,進而降低管理運營成本。此外,大數據還提供了全新的溝通渠道和營銷手段,可以更好的了解客戶的消費習慣和行為特徵,及時、准確地把握市場營銷效果。
第三,大數據技術有助於降低信息不對稱程度,增強風險控制能力。金融機構可以擯棄原來過度依靠客戶提供財務報表獲取信息的業務方式,轉而對其資產價格、賬務流水、相關業務活動等流動性數據進行動態和全程的監控分析,從而有效提升客戶信息透明度。目前,先進銀行已經能夠基於大數據,整合客戶的資產負債、交易支付、流動性狀況、納稅和信用記錄等,對客戶行為進行全方位評價,計算動態違約概率和損失率,提高貸款決策的可靠性。
當然,也必須看到,金融機構在與大數據技術融合的過程中也面臨諸多挑戰和風險。
一是大數據技術應用可能導致金融業競爭版圖的重構。信息技術進步、金融業開放以及監管政策變化,客觀上降低了行業准入門檻,非金融機構更多地切入金融服務鏈條,並且利用自身技術優勢和監管盲區佔得一席之地。而傳統金融機構囿於原有的組織架構和管理模式,無法充分發揮自身潛力,反而可能處於競爭下風。
二是大數據的基礎設施和安全管理亟待加強。在大數據時代,除傳統的賬務報表外,金融機構還增加了影像、圖片、音頻等非結構化數據,傳統分析方法已不適應大數據的管理需要,軟體和硬體基礎設施建設都亟待加強。同時,金融大數據的安全問題日益突出,一旦處理不當可能遭受毀滅性損失。近年來,國內金融企業一直在數據安全方面增加投入,但業務鏈拉長、雲計算模式普及、自身系統復雜度提高等,都進一步增加了大數據的風險隱患。
三是大數據的技術選擇存在決策風險。當前,大數據還處於運行模式的探索和成長期,分析型資料庫相對於傳統的事務型資料庫尚不成熟,對於大數據的分析處理仍缺乏高延展性支持,而且它主要仍是面向結構化數據,缺乏對非結構化數據的處理能力。在此情況下,金融企業相關的技術決策就存在選擇錯誤、過於超前或滯後的風險。大數據是一個總體趨勢,但過早進行大量投入,選擇了不適合自身實際的軟硬體,或者過於保守而無所作為都有可能給金融機構的發展帶來不利影響。
應該怎樣將大數據應用於金融企業呢?
盡管大數據在金融企業的應用剛剛起步,目前影響還比較小,但從發展趨勢看,應充分認識大數據帶來的深遠影響。在制訂發展戰略時,董事會和管理層不僅要考慮規模、資本、網點、人員、客戶等傳統要素,還要更加重視對大數據的佔有和使用能力,以及互聯網、移動通訊、電子渠道等方面的研發能力;要在發展戰略中引入和踐行大數據的理念和方法,推動決策從「經驗依賴」型向「數據依靠」型轉化;要保證對大數據的資源投入,把渠道整合、信息網路化、數據挖掘等作為向客戶提供金融服務和創新產品的重要基礎。
(一)推進金融服務與社交網路的融合
我國金融企業要發展大數據平台,就必須打破傳統的數據源邊界,注重互聯網站、社交媒體等新型數據來源,通過各種渠道獲取盡可能多的客戶和市場資訊。首先要整合新的客戶接觸渠道,充分發揮社交網路的作用,增強對客戶的了解和互動,樹立良好的品牌形象。其次是注重新媒體客服的發展,利用各種聊天工具等網路工具將其打造成為與電話客服並行的服務渠道。三是將企業內部數據和外部社交數據互聯,獲得更加完整的客戶視圖,進行更高效的客戶關系管理。四是利用社交網路數據和移動數據等進行產品創新和精準營銷。五是注重新媒體渠道的輿情監測,在風險事件爆發之前就進行及時有效的處置,將聲譽風險降至最低。
(二)處理好與數據服務商的競爭、合作關系
當前各大電商平台上,每天都有大量交易發生,但這些交易的支付結算大多被第三方支付機構壟斷,傳統金融企業處於支付鏈末端,從中獲取的價值較小。為此,金融機構可考慮自行搭建數據平台,將核心話語權掌握在自己的手中。另一方面,也可以與電信、電商、社交網路等大數據平台開展戰略合作,進行數據和信息的交換共享,全面整合客戶有效信息,將金融服務與移動網路、電子商務、社交網路等融合起來。從專業分工角度講,金融機構與數據服務商開展戰略合作是比較現實的選擇;如果自辦電商,沒有專業優勢,不僅費時費力,還可能喪失市場機遇。
(三)增強大數據的核心處理能力
首先是強化大數據的整合能力。這不僅包括金融企業內部的數據整合,更重要的是與大數據鏈條上其他外部數據的整合。目前,來自各行業、各渠道的數據標准存在差異,要盡快統一標准與格式,以便進行規范化的數據融合,形成完整的客戶視圖。同時,針對大數據所帶來的海量數據要求,還要對傳統的數據倉庫技術,特別是數據傳輸方式ETL(提取、轉換和載入)進行流程再造。其次是增強數據挖掘與分析能力,要利用大數據專業工具,建立業務邏輯模型,將大量非結構化數據轉化成決策支持信息。三是加強對大數據分析結論的解讀和應用能力,關鍵是要打造一支復合型的大數據專業團隊,他們不僅要掌握數理建模和數據挖掘的技術,還要具備良好的業務理解力,並能與內部業務條線進行充分地溝通合作。
(四)加大金融創新力度,設立大數據實驗室
可以在金融企業內部專門設立大數據創新實驗室,統籌業務、管理、科技、統計等方面的人才與資源,建立特殊的管理體制和激勵機制。實驗室統一負責大數據方案的制定、實驗、評價、推廣和升級。每次推行大數據方案之前,實驗室都應事先進行單元試驗、穿行測試、壓力測試和返回檢驗;待測試通過後,對項目的風險收益作出有數據支撐的綜合評估。實驗室的另一個任務是對「大數據」進行「大分析」,不斷優化模型演算法。在「方法論上。
(五)加強風險管控,確保大數據安全。
大數據能夠在很大程度上緩解信息不對稱問題,為金融企業風險管理提供更有效的手段,但如果管理不善,「大數據」本身也可能演化成「大風險」。大數據應用改變了數據安全風險的特徵,它不僅需要新的管理方法,還必須納入到全面風險管理體系,進行統一監控和治理。為了確保大數據的安全,金融機構必須抓住三個關鍵環節:一是協調大數據鏈條中的所有機構,共同推動數據安全標准,加強產業自我監督和技術分享;二是加強與監管機構合作交流,藉助監管服務的力量,提升自身的大數據安全水準;三是主動與客戶在數據安全和數據使用方面加強溝通,提升客戶的數據安全意識,形成大數據風險管理的合力效應。
㈡ 金融行業有哪些領域需要大量運用數據分析
1.宏觀經濟分析:國內外宏觀經濟數據分析、政策走勢分析、經濟形勢分析。
2.證券數據分析:通過建立數據模型,分析股票指數數據,預測股票走勢。
3.財務報表分析:通過建立分析模型,分析財務狀況,關聯公司之間的經濟往來情況。
4.投資項目評估:多維度分析投資項目,通過數據進行投資決策支持,減少投資風險。
㈢ 金融行業適合使用哪種大數據分析軟體
金融行業的數據量比較大,可以試用一下極星大數據分析系統。它是專為大企專業打造的大數據屬軟體,擁有數據採集、數據存儲、數據處理、數據挖掘、數據分析、數據可視化、數據專業演算法等強大功能,金融、電力、製造業、石化、燃氣、交通等行業都適合。
㈣ 金融行業做數據分析的職業發展和規劃如何提高工作能力和價值
數據分析在第一年基本上都是收集,整理編輯一些金融信息,常用的回軟體是office和數據答庫。
至於提高工作能力,前期就是努力,踏實的工作,沒有第二條快速的線路。公司收你,是要你為它做出效益,別的都是空話。
以後的發展,主要是金融分析師。不過未來的發展路線最好還是按照個人的能力偏向比較好,你擅長與人溝通相處並能領導別人,也可以轉向管理;或者你親和力強,也可以做銷售。
㈤ 金融數據分析師職業前景怎麼樣
可以從事的崗位有很多,例如投資咨詢顧問、投資銀行家、證券交易員、執行總裁、主席、合夥人、主負責人、投資總監、財務總監、會計師、審計師、市場、投資公司經理、證券分析師和固定收益分析師、投資組合經理等
介於每個人的情況都有所不同,以拿CFA從業者的投資分析師為例,為大家普及了金融人的職業發展之路。
一、Analyst(分析員)
投行中的Analyst(分析員)一般都是為各大院校應屆生准備的一個2年的program,剛畢業的大學生一般都會從此做起。既然叫做分析師,工作內容不外乎是一些數據分析、行業研究之類的工作,有些需要建立一些初步的模型,包括mergermodel、DCF、LBO等等,然後交給associate進一步review和加工。
研究結束,要使用PPT將研究結果呈現出來,所以這個崗位也會經常用到PPT。當然,作為一個初級崗位,很多情況下還會涉及到很多雜七雜八的事情,總是就是投行工作的基礎,也是鍛煉人的崗位。
這個崗位一般堅持3年時間久可以得到升遷,大多數金融人也是在這個崗位上開始學習CFA的,有前瞻性的大學生在畢業前就把CFA一級考過了,可以極大的縮短在基層工作的時間,兩年甚至很短時間就可以成為Associate,也就是我們要談的下一個崗位。
二、Associate(副經理)
Associate是比Analyst高一級的職位,要麼是從Analyst晉升而來,要麼是各金融專業高材生或者CFA持證人之類。作為Analyst的小領導,Associate仍然要做一些分析類的工作,不過是有點技術含量的工作,負責更復雜的建模。Associate還要根據公司或者上級的安排,分配任務,承擔administrativework,並且主要負責與客戶的溝通。
雖是領導,Associate的工作並不輕松,每天需要加班加點,並對全組工作負責。這個崗位需要一定的金融知識背景,所以很喜歡的MBA或者CFA持證人,即便是只通過了CFA二級考試,也會受到歡迎。通常員工會在此崗位上工作3到4年的時間,然後才能學到足夠的本事升到更高的位置上。
三、VP(副總裁或經理)
如果你順利進入到VP階段,那麼恭喜你已經得到了升華。VP泛指所有高層的副級人物,工作要指導Associate和Analyst,同時也要有一些外部環境的接觸。很多CEO忙不過來的工作都會交給VP負責。
VP的工作主要由兩大塊組成,一是充當projectmanager的角色,當D或MD接到deal的時候,負責executingthedeal,二是計劃所有需要的過程和任務分配給associates,並且確保順利進行。VP同時也是和客戶接洽以及聯系各個support的人比如accountant、lawyer等等的核心人物。
做到VP不容易,要得到晉升更不容易,行業內VP普遍工作3到15年才有機會晉升,除了經驗、能力、運氣,各種自我提升也少不得。大部分金融人在這個崗位上努力通過CFA三級考試,提交證書申請,如果已經是CFA持證人,那真是極好的。
四、Director(總經理、董事)
根據投行的規模不同,Director或有或無。Director負責重要的交易比如費用談判,交易策略和客戶會議。還有就是做營銷吸引客戶。MD工作性質與其近似,不過焦點在重要的客戶上。
五、MD(董事總經理)
Director3年左右就會升任MD(董事總經理)。MD級別有很高的業務收益指標以及維護重要客戶的責任,參與公司的整體戰略及業務方向制定。
MD再往上發展就會去做各個分支的管理人,或者是做CEO。這個時候如果沒有一張CFA這樣的很囂張的證書傍身就不合適了。
以上是一個典型的投行職稱序列,有些金融機構會設置一些中間職稱,比如assistantVP(AVP)即助理VP、seniorVP(SVP)即VP等,唯一不變的是對人能力的要求和證書的要求。
當然,CFA的在職業發展上的幫助不止如此,從職業發展的角度,一張代表了你金融理論過硬、工作經驗豐富的CFA證書,能幫你優雅地、高效地達成目標。現在vc/pe是一個很時髦的詞,國內也出現了很多風投成功的案例,想進入風投圈或者私募圈的金融人不在少數,如果沒有一張高含金量的CFA證書,恐怕連門檻都進不去呢。
㈥ 金融數據分析師是什麼在金融行業什麼地位
金融分析師的工作內容是:培育專業的機構投資人;對開放式基金進行管理以內及創業板市場的設立與運容作;保險基金和養老基金的管理;商業銀行股份化和資產證券化運作;股票指數、期貨分析以及風險資金管理等。
金融分析師的工作也包括:收集研究對象信息,對其產品進行分析研究,提供分析研究及投資價值報告;跟蹤研究對象變化情況,及時動態判斷所研究對象的投資價值變化情況,作出投資預期回報與風險分析,調整投資操作建議;對公開發行的各種理財產品的設計、談判、簽約發行及維護;通過各種聯絡方式開發新客戶,與老客戶保持聯系;負責完成金融產品開戶訂單,解答客戶各項問題;及時反饋客戶意見,把握市場動向。
㈦ 大四畢業想應聘銀行或金融單位的數據分析崗需要學習什麼
數據分析師職位具有鮮明的時代特點和巨大的需求,在大學本科階段統計專業積極探索培養大學生的數據分析能力,進而為社會提供合格的數據分析師人才的有效對策,具有重要的研究價值和實踐意義。
一、數據分析師培養的意義
(一)數據分析師的培養符合國家戰略
為適應世界經濟一體化的進程,徹底改變我國「項目數據分析」專業技術人才緊缺的現狀,2005 年 4 月,全國第一家數據分析事務所在陝西成立,到目前,我國相繼已有北京、陝西、江蘇、新疆、甘肅、山東、浙江、上海、黑龍江等 14 個省、市、自治區約 80 家項目數據分析專業機構進入中國市場經濟舞台,涉及項目已從最初的分析評估業和金融業,擴展至會計師、投融資機構、政府審批和企業管理等眾多領域。隨著大數據時代的來臨,構建大數據研究平台、整合創新資源、實施「專項計劃」等成為各個省市的工作重點之一。
(二)數據分析師的就業前景光明
在被視為「數據元年」的今天,數據分析師以待遇優厚和地位尊崇而聞名國際,曾被Times時代雜志譽為「21世紀最熱門五大新興行業」。今天,國內數據分析行業專業人才每年以千位數非速增長著,同期各行業領域空缺崗位已達近二十萬,未來中國對數據分析師的需求更是呈井噴之勢。
在數據分析人才培養上,國外已經將數據分析師人才作為國家戰略。據統計,目前世界 500 強企業中,有90% 以上建立了數據分析部門。大數據時代對數據分析師的巨大需求也大大刺激了高等院校的培養熱情。
二、數據分析師職業素養的培養
通過對各大招聘網站數據分析師、市場調查分析師等職位招聘信息的搜集整理和深入分析,挖掘並歸納出社會用人單位對數據分析師職位的知識技能和道德素質等方面的具體要求如下:
(一)數據分析師的職業內涵
數據分析師是指在不同行業中,專門從事數據搜集、整理、分析,並依據數據做出行業或市場研究、評估和預測的專業人員;是以實際數據為依據,對項目現狀及遠期進行統計、分析、預測並轉化為決策信息的專業人才。數據分析師可以通過掌握的大量行業數據,運用科學的計算工具,將經濟學原理與數學模型結合,進行科學合理的定量分析,數據分析師可以預測企業未來的收益及風險,為企業經營決策提供科學量化分析的依據。
目前數據分析師的認證主要有 2個:一是注冊數據分析師(CDA),由CDA注冊數據分析師協會Certified Data Analyst Institute)在順應大數據、雲計算的潮流下發起成立的職業簡稱;二是項目數據分析師(CPDA),由中國商業聯合會數據分析專業委員會以及工信部教育考試中心共同考核認證,證書是申請成立項目數據分析事務所的必備條件之一。
(二)數據分析師的知識要求
掌握多元統計分析、應用回歸分析、時間序列分析、計量經濟學、經濟預測研究等統計建模方法,了解本行業統計方法的新進展;掌握 SQL/oracle 等資料庫的數據整理、查詢、提取等方法;熟練使用相關的統計軟體,准確解讀軟體的運行結果;了解相關行業的業務知識和數據構成。
(三)數據分析師的能力要求
對信息、數據敏感,具備較強的文字功底,能獨立撰寫研究報告;能熟練使用 SPSS/SAS/Eviews 等統計分析軟體,具備數據分析或數據挖掘的綜合能力;掌握資料庫體系結構及數據架構,具備 Excel/SQL 或 Access 的查詢語句運用技能與知識,有良好的數據處理、建立統計模型能力。
(四)數據分析師的崗位職責
承擔行業、企業有關信息、數據的調查、搜集、整理、分析研究和發布工作;參與專項研究、課題和調研咨詢項目,撰寫行業分析文章和研究報告;對大數據進行深入挖掘,建立相關模型進行預測、分析,找出相關的聯系,揭示內在規律,為行業、企業決策提供依據。
以上是小編為你整理到的一些資料,希望對你有所幫助~~
㈧ 金融行業有哪些領域需要運用數據分析
您好,我也是金融行業的,之前在做數據採集和分析的時候也是找了很多方法,後內來是找的前嗅,他們公容司自己的數據分析系統,還是很好用的,你不妨試試,他是從幾方面給我分析的:
1.宏觀經濟分析:國內外宏觀經濟數據分析、政策走勢分析、經濟形勢分析。
2.證券數據分析:通過建立數據模型,分析股票指數數據,預測股票走勢。
3.財務報表分析:通過建立分析模型,分析財務狀況,關聯公司之間的經濟往來情況。
4.投資項目評估:多維度分析投資項目,通過數據進行投資決策支持,減少投資風險。
希望對你有用。