❶ 現在學什麼技術有前途一些
以義務為例,緊缺工種有:半導體晶元製造工、半導體分立器件和集成電路裝調工、服裝製版師、縫紉工、倉儲管理員、勞動關系協調員、美容師、美發師、有害生物防制員。
義務發布緊缺職業(工種)目錄。根據重點產業和優勢行業發展趨勢,調查技能人才供需現狀,預測這兩年技能人才需求,市人社局確定加工中心操作工等39個職業(工種)為義務2019年—2020年緊缺職業(工種)。從數量上來說,是歷年來最多的。
緊缺目錄新增9個職業(工種),分別是半導體晶元製造工、半導體分立器件和集成電路裝調工、服裝製版師、縫紉工、倉儲管理員、勞動關系協調員、美容師、美發師、有害生物防制員。
(1)半導體產業發展趨勢擴展閱讀:
義烏市緊缺工種扶持政策:
在緊缺職業(工種)一線崗位工作,而且所在企業實行技能等級薪酬制度的高技能人才,每人每月可領取的「政府津貼」標准為:高級技師500元,技師300元;
對義烏市企業職工及社會人員開展高技能人才培養的單位,按取得高級職業資格證書的人數分別給予高級技師1000元、技師600元、高級工300元的獎勵;
義烏市高技能人才公共實訓基地承擔校企合作培養項目或緊缺職業(工種)高技能人才實訓的,按取得高級職業資格證書的人數,給予上述標准兩倍的獎勵。
❷ 台積電並不是美國的,那它為何不賣晶元給中國
台積電雖然不屬於美國,但是美國卻可以通過這種方法限制台積電和華為合作,台積電其實也想賣晶元給中國華為,但是卻身不由己。大家都知道,自從華為5G技術崛起以後,美國一直想要採取各種手段限制華為的成長。最近,美國更是想要通過「源自美國技術」標準的禁令更新,來限制台積電為華為代工晶元,如果美國仍一意孤行,這對華為來說將是一個非常難以邁過的坎。
總而言之,從現實情況看來,台積電是沒有可能違背美國的意志為華為繼續提供晶元代加工了。通過美國打壓華為這件事,我們應該發現我們國家在很多科技技術方面的力量真的還非常的薄弱。
❸ 半導體的現狀及其發展趨勢
中國計算50年
——中國數字電子計算機的創業歷程及領路人
(2006-09-11 16:18:31)
■ 中國科學院院士、北京科技大學教授 高慶獅
編者按: 一轉眼,中國的計算機事業已經走過了50個春秋。在《計算機世界》紀念中國計算機事業發展50年的過程中,我們看到,在這50年裡,有太多激動人心的創舉出現,也有太多令人黯然的無奈穿過。
幾代大師為了中國計算機事業的發展鞠躬盡瘁,更多人為了中國計算機產業的前行奮發圖強。為此,我們特邀中國科學院院士、北京科技大學教授、中國科學院計算技術研究所終身研究員高慶獅撰寫此文,以紀念過往、慶祝成就,同時也警醒現狀、激勵未來。
50年風雨之後,為了尋求ICT的融合和計算領域的更大發展,中國正在積極醞釀更好的政策環境。2006年8月29日,全國信息產業科技創新會議在京召開。
自從1946年,世界上第一台數字電子計算機在美國誕生,與計算機最鄰近領域的數學和物理界的共和國泰斗、世界數學大師華羅庚教授和中國原子能事業的奠基人錢三強教授,十分關注這一新技術如何在國內發展。
中國誕生計算機
從1951年起,國內外和計算機領域相近的其他領域人才,尤其是從國外回來的教授、工程師和博士,不斷轉入到該行業中。他們當中的很多人,都在華羅庚領導的中科院數學所和錢三強領導的中科院物理所里,其中包括國際電路網路權威閔乃大教授、在美國公司有多年實踐經驗的范新弼博士、在丹麥公司有多年實踐經驗的吳幾康工程師,以及從英國留學回來的夏培肅博士和從美國留學回來的蔣士飛博士。
他們積極推動,把發展計算機列入12年發展規劃。
1956年3月,由閔乃大教授、胡世華教授、徐獻瑜教授、張效祥教授、吳幾康副研究員和北大的黨政人員組成代表團,參加了在莫斯科主辦的「計算技術發展道路」國際會議,到前蘇聯「取經」,為我國制定12年規劃的計算機部分做技術准備。當時的代表團主要成員後來都參加了12年規劃。此外,范新弼、夏培肅和蔣士飛也加入規劃制定中。在隨後制定的12年規劃中,確定了中國要研製計算機,並批准中國科學院成立計算技術、半導體、電子學及自動化等四個研究所。
計算技術研究所籌備處由科學院、總參三部、國防五院(七機部)、二機部十局(四機部)四個單位聯合成立,北京大學、清華大學也相應成立了計算數學專業和計算機專業。為了迅速培養計算機專業人才,這三個單位聯合舉辦了第一屆計算機和第一屆計算數學訓練班。計算數學訓練班的學生有幸聽到了剛剛歸國的錢學森教授和董鐵寶教授講課。錢學森教授在當時已經是國際控制論的權威專家,而董鐵寶教授在美國已經有過3~4年的編程經驗,也是當時國內惟一真正接觸過計算機的學者。當時我也是學生之一。
錢學森的數學功底的深度和廣度幾乎涵蓋了我們所學的數學的所有課程,而且運用自如,我們作為北大數學系學生,對此感到十分欽佩。同時,錢學森教授也幫助我們具體了解到,數學如何應用到實際物理世界中。
在前蘇聯專家的幫助下,由七機部張梓昌高級工程師領導研發的中國第一台數字電子計算機103機(定點32二進制位,每秒2500次)在中國科學院計算技術研究所誕生,並於1958年交付使用。參與研發的骨幹有董占球、王行剛等年輕人。隨後,由總參張效祥教授領導的中國第一台大型數字電子計算機104機(浮點40二進制位、每秒1萬次)在1959年也交付使用,骨幹有金怡濂,蘇東庄,劉錫剛,姚錫珊,周錫令等人。其中,磁心存儲器是計算所副研究員范新弼和七機部黃玉珩高級工程師領導完成的。在104機上建立的、由仲萃豪和董韞美領導的中國第一個自行設計的編譯系統,則在1961年試驗成功(Fortran型)。
國防是首要服務對象
在任何先進國家,計算機的發展首先都是為國防服務,應用於國家戰略部署上,中國也不例外。1958年,北京大學張世龍領導包括當時作為學生的王選在內的北大師生,與中國人民解放軍空軍合作,自行設計研製了數字電子計算機「北京一號」,並交付空軍使用。當時中國人民解放軍朱德總司令還親自到北京大學北閣「北京一號」機房參觀了該機器。隨後,張世龍帶領北大師生(包括王選和許卓群在內),立即投入北大自行設計的「紅旗」計算機研製工作,當時設定的目標比前蘇聯專家幫助研製的104機還高,並於1962年試算成功。但是由於搬遷和文革的干擾,搬遷後「紅旗」一直沒有能夠恢復和繼續工作。
與此同時,1958年,在哈爾濱軍事工程學院(國防科技大學前身)海軍系柳克俊的領導下,哈爾濱軍事工程學院和中國人民解放軍海軍合作,自行設計了「901」海軍計算機,並交付海軍使用。在海軍系康繼昌的領導下,哈爾濱軍事工程學院和中國人民解放軍空軍合作,自行設計的「東風113」空軍機載計算機也交付空軍使用。隨後,柳克俊領導的國產晶體管軍用的計算機,也在1961年交付海軍使用。
1958年~1962年期間,中國人民解放軍總參謀部也前後獨立研製成功了一些自行設計、全部國產化的計算機。
1964年,中科院計算技術研究所吳幾康、范新弼領導的自行設計119機(通用浮點44二進制位、每秒 5萬次)也交付使用,這是中國第一台自行設計的電子管大型通用計算機,也是當時世界上最快的電子管計算機。當時美國等發達國家已經轉入晶體管計算機領域,119機雖不能說明中國具有極高水平,但是仍然能表明,中國有能力實現「外國有的,中國要有;外國沒有的,中國也要有」這個偉大目標。
在119機上建立的,是董韞美領導的自行設計的編譯系統,該系統在1965年交付使用(Algol型),後來移植到109丙機上繼續起作用。
哈爾濱軍事工程學院計算機系慈雲桂教授領導的自行設計的晶體管計算機441B(浮點40二進制位、每秒8千次)在1964年研製成功,骨幹人員包括康鵬等人。1965年,441B機改進為計算速度每秒兩萬次。
與此同時,中科院計算技術研究所蔣士飛領導的自行設計的晶體管計算機109乙機(浮點32二進制位、每秒6萬次),也在1965年交付使用。為了發展「兩彈一星」工程,1967年,由中科院計算機所蔣士飛領導,自行設計專為兩彈一星服務的計算機109丙機,並交付使用,骨幹有沈亞城、梁吟藻等人。兩台109丙機分別安裝在二機部供核彈研究用和七機部供火箭研究用。109丙機的使用時間長達15年,被譽為「功勛計算機」,是中國第一台具有分時、中斷系統和管理程序的計算機,而且,中國第一個自行設計的管理程序就是在它上面建立的。
這些由中國科研人員自力更生、努力拚搏研製出的第一批計算機,代表了中國人掌握計算機的技術水平和成果,證明了中國有能力發展自己的全部國產化的計算機事業。
突破百萬到超越億計算
雖然我國自行設計研製了多種型號的計算機,但運算速度一直未能突破百萬次大關。1973年,北京大學(由張世龍培養的、包括許卓群和張興華等骨幹人員)與「738廠」(包括孫強南、陳華林等骨幹人員)聯合研製的集成電路計算機150(通用浮點48二進制位、每秒1百萬次)問世。這是我國擁有的第一台自行設計的百萬次集成電路計算機,也是中國第一台配有多道程序和自行設計操作系統的計算機。該操作系統由北京大學楊芙清教授領導研製,是國內第一個自行設計的操作系統。
1973年3月,在全國實際研製目標200~500萬次不能滿足中國飛行體設計的計算流體力學需要的情形下,時任國防科委副主任的錢學森,根據飛行體設計需要,要求中科院計算所在20世紀70年代研製一億次高性能巨型機,80年代完成十億次和百億次高性能巨型機,並且指出必須考慮並行計算道路。中科院計算所根據國防情報所和計算所情報室提供的國際上的公開資料,分析了1970年前後美國研製的高性能巨型機的優缺點之後,於1973年5月提出「全部器件國產化一億次高性能巨型機(20M低功耗ECL、電路-四條流水線)及其模型機(757向量計算機、10M ECL、電路-單條流水線)」的可行方案。由於文革中受到嚴重干擾,以及文革後「走馬燈」式良莠不齊的領導亂指揮,盡管在1979年,由亞城負責的20M低功耗ECL電路的集成電路晶元投片已經研發成功,但是最終「全部器件國產化一億次高性能巨型機」的研發,因為任務變化,最終擱淺。
表1和表2給出了代表中國掌握電子管、晶體管、集成電路計算機技術的發展時間表,水平主要是根據創新的「三性」中的先進性。需要說明的是,表中所列只是代表中國已掌握的計算機技術水平的計算機,其中,帶*的103、104、119、150、757,及銀河-1號巨型機和銀河-2模擬計算機等7台計算機,都被載入「記述對中華文明發展起促進作用的重要歷史事件」的中華世紀壇青銅甬道銘文中。
除了研製水平之外,產業、市場和應用的發展也同樣重要。在批量生產計算機上,電子工業部及其相關研究所(例如著名的15所)和工廠(例如著名的738廠)功不可沒。不僅上述中國早期計算機的研製和批量生產要依靠它們,而且它們也獨立設計和研製過一些成批生產的計算機(例如108系列、與清華大學合作的DJS-130等),尤其在人造衛星地面系統(例如320計算機及艦上718計算機)及其他軍工任務上,這些研究所和工廠都有過突出貢獻。研究所和工廠研究工作的重點,主要是在技術和工藝方面。他們的領軍人包括莫根生、陳立偉、曹啟章及一批骨幹人員,例如江學國等。現任中國工程院院士羅沛霖領導的仿IBM系列也起過歷史性作用,沈緒榜和李三立負責的有關衛星天上和地上計算機及其他任務用的計算機也做出了重要的貢獻。此外,七機部、清華大學及中科院各分院在發展計算技術方面還做出了許多貢獻,這里就不枚舉了。
中國自力更生全部國產化的半導體、集成電路計算機事業,和20世紀50~70年代林蘭英、王守武、王守覺和徐元森等教授領導的中科院半導體所、上海冶金所和109廠的研究及開發工作是分不開的。中科院半導體所和109廠都是從中國科學院物理所獨立出來的,中科院物理所對中國計算機事業的歷史貢獻功不可沒。
人才培養至關重要
發展計算機事業離不開人才培養,20世紀50~70年代,中科院計算技術研究所(及之後的中國科技大學)的夏培肅副研究員、北京大學和哈爾濱軍事工程學院,在組織教師和學生動手研製計算機、進行實踐、培養人才等方面,都取得了很好的成績。夏培肅領導組織教師和學生動手研製了107(定點32二進制位、每秒 250次)計算機,該計算機於1960年交付使用,並且還復制了兩台。盡管107計算機比103(1958年交付使用)、104計算機(1959年交付使用)速度低了10倍到40倍,但是對培養人才起了重要作用。
一個計算機系統是由多方面研究成果構成的。范新弼領導的磁心存儲器長期處於領先地位,其中主要的骨幹有伍福寧、王振山、徐正春、張傑、甘鴻,等等。王克本領導了中國第一個八層印刷電路版研究與設計小組。方光旦在磁頭、磁膠,張品賢在磁帶,顧爾旺在磁鼓等方面,都做出了出色的貢獻。實際上,大多計算機的研發都是集體成果,例如全國參加757計算機研發工作的人員,就有上千人。
我國第一個「計算機系統結構設計」小組於1957年在中科院計算所成立。20世紀50~70年代,它承擔了中科院計算所代表性的計算機(119、109乙、109丙、757、717等計算機)的系統結構設計任務。參與成員則根據當時前蘇聯計算機領軍人物、前蘇聯科學院列貝捷夫院士的建議,由年輕的數學專業畢業生組成。第一任小組負責人是國際網路權威人士閔乃大教授,第一個正式設計任務則是1958年5月國防部門的「導彈防禦系統計算機」系統結構設計。設計工作由北京大學張世龍和第二任小組負責人虞承宣,加上6名數學專業畢業的大學生組成,其中周巢塵、沈緒榜等3人後來分別由不同領域(軟體、航天、系統結構)、不同單位被選為中科院院士。
中國20世紀60年代編譯系統的帶頭人在當時都是年輕人,如中國人民解放軍總參謀部楊奇、中科院計算所董韞美和仲萃豪、南京大學徐家福、國防科技大學陳火旺等。中國20世紀60年代操作系統的帶頭人有北京大學楊芙清、南京大學大孫仲秀等,當時也都是年輕人。軟體正確性設計(容易推廣到硬體的正確性設計)是近20多年國際上關注的具有巨大經濟效益、社會效益和理論價值的重大問題。我國領軍人物何積豐院士、周巢塵院士如今已經是國際上知名的佼佼者。20世紀70年代,逐漸形成容錯和檢測理論和實踐的帶頭人是魏道政,而知識處理的帶頭人是陸汝鈐。
依賴進口弊端過大
20世紀70年代後期以後,中國研製的計算機,幾乎全部使用進口元器件、進口部件。
由於超大規模集成電路迅速發展,數千萬甚至上億個晶體管逐漸能夠集成在一個晶元上,20世紀80年代及其之後得到迅速發展的計算機,是普通個人使用的「微機」(PC機)及超強「微機」(後者可以組成伺服器或者並行處理的高性能計算機),而其他各式各樣的計算機(包括超級中小型計算機在內)由於性價比問題,無法和微機競爭,就自然逐步退出舞台了。國際上沒有及時調整戰略的計算機公司,例如CDC公司、王安公司等,紛紛倒閉。雖然如此,國內那一段過渡時期為了滿足用戶需求而研製的各種機型也曾有過較大貢獻,例如張修領導的KJ8920,在為用戶提供優質服務軟體方面就很突出。
中國最早意識到個人計算機發展趨勢而率先轉向研究「微機」,並且做出突出貢獻的帶頭人有倪光南、韓承德等。
國內高性能計算機,有慈雲桂、盧錫城、周興銘、楊學軍領導的銀河系列;張效祥、金怡濂、陳左寧領導的神州系列;李國傑、孫凝暉領導的曙光系列;祝明發領導的聯想深騰系列;以及周興銘領導的銀河-2數字模擬巨型機等。PC機有聯想系列、長城系列、方正系列、同方系列等,其學術代表性帶頭人是倪光南,產業代表性的領軍人是柳傳志。
計算機產業作為一個產業鏈,軟體發展依賴於整機和應用需求的發展;整機的發展依賴於晶元、部件及需求的發展;晶元的發展則依賴於「集成電路生產線大三角形」的發展。這里集成電路生產線大三角形是指集成電路生產線的三大部分,即大底座、中間層和頂層。大底座(價值十多億美元的集成電路製造工藝生產線)是從拉單晶硅到光刻-擴散-參雜,到最後封裝,相當於過去林蘭英、王守武、王守覺和徐元森等領導中科院半導體所、上海冶金所的研究工作。中間層是各種高速低功耗電路設計,相當於過去中科院計算所電路設計組蔣士飛、沈亞城等人的研究工作。20世紀70年代,沈亞城所進行的高速低功耗ECL電路設計,直到做成晶元,才可以算做完成。頂層則是硅編譯等等軟體工作,這部分工作過去是計算所使用小規模集成電路時把邏輯設計圖變成為工程布線圖的手工工作,加上半導體所製造小規模集成電路各種掩模版所需的手工工作。在超大規模集成電路的情況下,從復雜性、可靠性角度,手工是絕對不可能完成的,需要依靠硅編譯來自動完成。
在允許部分進口的環境下,一個產業鏈如果要求全部國產化,會造成一環落後引發產業鏈後續部分全部落後的情況;使用進口元器件、進口部件,使得各種類型整機可以在國際先進基礎上得到發展,進而軟體和應用都能在國際先進基礎上得到發展,從市場經濟角度看,這無疑是正確的。
但是,當國內所研製的計算機全部轉向使用進口元器件、進口部件時,一方面中國的高性能計算和PC機的發展依賴於進口元器件和進口部件的水平;另一方面中國的集成電路研製力量,由於缺少巨大的經濟支持,都轉向非計算機用的其他難度小的方向。
「元器件全部進口化」導致的結果是,不僅全部國產化的億次高性能巨型機研製中止,而且真正完全自主的國產的計算機集成電路研製工作也中斷,至今也沒有恢復,甚至沒有任何恢復的跡象,這兩方面對國家安全都很不利。實際上,「集成電路生產線大三角形」依靠進口的集成電路生產線,就等於依賴外國集成電路生產線水平和外國政府批准向中國出口的集成電路生產線的水平。引進無法達到最先進,而且在特殊情況下,引進很可能中斷,引進的生產線的備份件也不能得到更新。
「中國芯」何時真正崛起
進入21世紀以後,李德磊負責的「方舟」、胡偉武負責的「龍芯」、以及王沁參加負責的「多思」、方信我負責的「國安」等等「中國芯」項目不斷涌現,計算機產業鏈國產化又前進了一大步。但當前或者未來將出現的眾多的「中國芯」的共同點,都是「集成電路生產線大三角形」的一個應用。也就是說,其水平仍然是依賴於外國集成電路生產線水平和外國政府批准向中國出口的集成電路生產線的水平,仍然受制於人。
眾多「中國芯」的主要的差別只是在系統結構設計上,或者在高速低功耗電路等設計上,有沒有重大創新、重大突破。設計明顯創新的,有國外學者稱之為相當於「大學生課程設計」水平,雖然難聽卻也有幾分道理。盡管能設計「中國芯」的人或公司越來越多,但是能設計「中國集成電路生產線大三角形」的人,如果不採取措施,不僅目前沒有,恐怕不遠的將來仍然是空白。如果中國不能製造中國的「集成電路生產線大三角形」,那麼無論有多少種「中國芯」,中國的高性能計算機和中國PC機的發展水平就必然還是取決於美國「集成電路生產線大三角形」的發展水平及美國政府允許向中國出口的水平。
現實的道路是,我們可以通過引進、消化、吸收與獨立研究相結合的方式發展晶元產業,而建立完全自主的「集成電路生產線大三角」,則應該是國家急需解決的重中之重。
早在1965年,中科院半導體所王守覺就開始研製從邏輯圖到掩模版的自動形成系統「圖形發生器」,這項研究比美國還早。由於文革破壞而中斷了3年,1971年初研製成功時,反而比美國晚了一年多。以上歷史說明,中國人的獨立研究能力也不容忽視,研究環境也不容被忽視。
如何做到既能使產業鏈的各個環節的發展都能建立在國際最高水平之上,又能確保國家安全?這不僅僅是一個計算機產業鏈的問題,應該是許多產業鏈所存在的共同問題,更是決策者急需處理的政策問題。
中國半個世紀電子數字計算機事業的領路人,是在兩位共和國功勛科學家華羅庚和錢三強關注下的一個群體,這個群體在50年前,是10多名從相鄰領域轉過來的30~40多歲的中青年帶頭人,和五、六十名受過專業教育的20多歲的青年骨幹,還有數十名當時尚未出世的後起之秀,本文列舉的,只是這個百人群體中的一小部分。
鏈接:文中部分科學家簡歷
華羅庚:江蘇金壇人。中國解析數論、典型群、矩陣幾何學、自守函數論與多復變函數論等很多方面研究的創始人與開拓者,國際知名數學家,先後當選美國科學院外籍院士,第三世界科學院院士,法國南錫大學、美國伊利諾大學、香港中文大學榮譽博士,聯邦德國巴伐利亞科學院院士等。
錢三強:浙江湖州人,出生於浙江紹興。核物理專家、中國核原子科學之父,曾師從居里的女兒、諾貝爾獎獲得者伊萊娜?居里及其丈夫約里奧?居里。在中國研發原子彈期間,擔任技術總負責人、總設計師,被追授「兩彈一星功勛獎章」。
范新弼:電子計算機專家,湖南長沙人。1951年獲美國斯坦福大學電子學博士學位,在電子器件研究與應用領域獲8項美國專利。歸國後,領導我國第一台大型計算機及其後多台大型計算機的磁芯存儲器研製工作,領導中國半導體存儲元件研究,建立了國內第一批測試設備。
張效祥:計算機專家、中國科學院院士(學部委員)、中國解放軍總參謀部計算技術研究所研究員。領導中國第一台大型通用電子計算機的仿製並在此後的35年中主持中國自行設計的電子管、晶體管到大規模集成電路各代大型計算機的研製,為中國計算機事業的創建、開拓和發展,起了重要作用。1985年,領導完成中國第一台億次巨型並行計算機系統。
錢學森:中國現代物理學家、世界著名火箭專家、全國政協副主席,浙江杭州市人,生於上海。錢學森曾在美國任講師、副教授、教授以及超音速實驗室主任和古根罕噴氣推進研究中心主任。1950年開始,歷經5年努力,於1955年才回到祖國,1958年起長期擔任火箭導彈和航天器研製的技術領導職務。
董鐵寶:力學家、計算數學家,江蘇武進人,「中國第一個程序員」(王選),長期致力於結構力學、斷裂力學、材料力學性能、計算數學的研究和教學,我國計算機研製和斷裂力學研究的先驅者之一。1945年赴美學習,1956年歸國教學,1968年在文革中因受迫害自殺。
金怡濂:中國工程院院士、著名高性能計算機專家、國家最高科學技術獎獲得者,原籍江蘇常州。中國第一台大型計算機研製者之一,先後提出多種類型、各個時期居國內領先或國際先進水平的大型、巨型計算機系統的設計思想和技術方案,為我國高性能計算機技術的跨越式發展和趕超世界計算機先進水平有著重要貢獻。
王選:江蘇無錫人。著名的計算機應用專家,主要致力於文字、圖形、圖象的計算機處理研究。中國科學院院士、中國工程院院士、第三世界科學院院士、國家最高科學技術獎獲得者。曾任北大方正集團董事、方正控股有限公司首席科技顧問,九三學社副主席、中國科協副主席、九三學社副主席、中國科協副主席。2003年當選十屆全國政協副主席。
周巢塵:計算機軟體專家,原籍江蘇南匯,中國科學院院士(學部委員)、第三世界科學院院士、中國科學院軟體研究所研究員,曾任聯合國大學國際軟體技術研究所所長。
楊芙清:北京大學計算機學科第一位教授、博士生導師,中國科學院院士(學部委員)、計算機科學技術及軟體專家,無錫人。歷任軟體工程國家工程研究中心主任、北京大學信息與工程科學學部主任、北京大學軟體工程研究所所長、北京大學計算機科技系教授。
孫仲秀:計算機科學家、中國科學院院士,原籍浙江餘杭,生於江蘇省南京市,歷任南京大學助教、講師、副教授、教授、博士生導師、副校長等職。1974年後主持研製了中國國產系列計算機DJS200系列的DJS200/XT1和 DJS200/XT1P等操作系統。從1979年起開始對分布式計算機系統軟體和應用進行了研究,1982年在國內首次研製成功ZCZ分布式微型計算機系統,研究和開發了多個實用的分布式計算機系統。
何積豐:中國科學院院士、計算機軟體專家,生於上海,祖籍浙江寧波。現任華東師范大學終身教授、軟體學院院長,上海嵌入式系統研究所所長、聯合國大學國際軟體技術研究所高級研究員。早年進行管理信息系統和辦公自動化系統的研發。
吳幾康:安徽歙縣人。計算機專家、中國計算機事業的開拓者之一。曾於1951年至1953年在丹麥任無線電廠開發工程師,歸國後調至中國科學院近代物理研究所,後參與籌建計算技術研究所。1965年負責研製成功兩台大型通用計算機,後參與籌建771微電子學研究所,任副所長和研究員。
張梓昌:電子計算機專家。江蘇崇明(今屬上海市)人。歷任航天工業部第二研究院所長、測控公司總工程師,中國計算機學會第一屆副理事長,中國宇航學會第一、二屆理事。長期從事電子設備和計算機的研製,曾負責我國第一台計算機的技術工作,是我國計算機技術的學科帶頭人之一。
張世龍:北京大學計算機科學與技術系主任、教授,曾參加我國第一台自行設計製造的大型計算機119機和北大紅旗計算機的系統設計。
慈雲桂:著名計算機科學家、教授,中國科學院技術科學部學部委員,安徽桐城人。歷任國防科技大學副校長兼電子計算機系主任和計算機研究所所長等職,先後主持了我國多種型號計算機的研製,從領導研製我國第一台電子管數字計算專用機,到擔任「銀河」億次計算機研製的技術總指揮和總設計師,為國家經濟建設、國防建設及科學研究事業做出了突出貢獻。
馮康:應用數學和計算數學家、中國科學院院士、世界數學史上具有重要地位的科學家。生於江蘇南京,原籍浙江紹興。其獨立創造了有限元方法、自然歸化和自然邊界元方法,開辟了辛幾何和辛格式研究新領域。中國現代計算數學研究的開拓者。1997年底國家自然科學一等獎授予馮康的另一項工作「哈密爾頓系統辛幾何演算法」。歷任中國科學院計算技術研究所任副研究員、研究員,中國科學院計算中心主任、名譽主任。(排名不分先後)
(計算機世界報)
參考資料:http://www.cnii.com.cn/20060808/ca371826.htm
❹ 機電一體化專業的就業方向和前景
機電一體化專業在 機械技術、電腦技術、系統技術、自動技術、感測技術、伺服技術等回方面都有涉及,總答體前景看好。
機電一體化又稱機械電子工程,是機械工程與自動化相互融合的一門專業。是集機械、電子、光學、控制、計算機、信息等多學科的交叉綜合。
機電一體化技術專業應用領域廣泛。畢業生主要可從事數控設備的維護、調試、操作、製造、安裝和營銷等技術與管理工作,就業崗位群大。該專業培養具有機械、電子、液(氣)壓一體化技術基本理論,掌握機電一體化設備的操作、維護、調試和維修,掌握應用機電一體化設備加工的工藝設計和加工工藝的基本方法和基本技能的工程技術人才。還包括電、車、鉗三種工人的職業。
❺ 量子計算是未來趨勢,現在還有必要大力發展半導體嗎
半導體技術以美國最為發達,遵循摩爾定律,雖然近些年沒有什麼耀眼的進展,只是在版製程上不斷由14nm-->10nm-->7nm-->5nm, 但依權然領先我國不少,所以至少我國是要大力發展半導體的,免得受制於人(我國每年半導體需求巨大)!
量子計算,雖然理論上前景光明,也在嘗試著做簡單的量子計算機,但要實現大規模商用,還不知道猴年馬月,轉眼幾十年上百年就過去了!
❻ 混合集成電路的發展趨勢
混合集成技術的復發展趨勢是:①制用多層布線和載帶焊技術,對單片半導體集成電路進行組裝和互連,實現二次集成,製作復雜的多功能、高密度大規模混合集成電路。②無源網路向更密集、更精密、更穩定方面發展,並且將敏感元件集成在它的無源網路中,製造出集成化的感測器。③研製大功率、高電壓、耐高溫的混合集成電路。④改進成膜技術,使薄膜有源器件的製造工藝實用化。⑤用帶互連線的基片組裝微型片狀無引線元件、器件,以降低電子設備的價格和改善其性能。
❼ 半導體材料的應用及發展趨勢
半導體材料(semiconctormaterial)是一類具有半導體性能(導電能力介於導體與絕緣體之間,電阻率約在1mΩ·cm~1GΩ·cm范圍內)、可用來製作半導體器件和集成電路的電子材料。
一、半導體材料主要種類
半導體材料可按化學組成來分,再將結構與性能比較特殊的非晶態與液態半導體單獨列為一類。按照這樣分類方法可將半導體材料分為元素半導體、無機化合物半導體、有機化合物半導體和非晶態與液態半導體。
1、元素半導體:在元素周期表的ⅢA族至ⅦA族分布著11種具有半導性半導體材料的元素,下表的黑框中即這11種元素半導體,其中C表示金剛石。C、P、Se具有絕緣體與半導體兩種形態;B、Si、Ge、Te具有半導性;Sn、As、Sb具有半導體與金屬兩種形態。P的熔點與沸點太低,Ⅰ的蒸汽壓太高、容易分解,所以它們的實用價值不大。As、Sb、Sn的穩定態是金屬,半導體是不穩定的形態。B、C、Te也因制備工藝上的困難和性能方面的局限性而尚未被利用。因此這11種元素半導體中只有Ge、Si、Se3種元素已得到利用。Ge、Si仍是所有半導體材料中應用最廣的兩種材料。
(半導體材料)
2、無機化合物半導體:分二元系、三元系、四元系等。二元系包括:①Ⅳ-Ⅳ族:SiC和Ge-Si合金都具有閃鋅礦的結構。②Ⅲ-Ⅴ族:由周期表中Ⅲ族元素Al、Ga、In和V族元素P、As、Sb組成,典型的代表為GaAs。它們都具有閃鋅礦結構,它們在應用方面僅次於Ge、Si,有很大的發展前途。③Ⅱ-Ⅵ族:Ⅱ族元素Zn、Cd、Hg和Ⅵ族元素S、Se、Te形成的化合物,是一些重要的光電材料。ZnS、CdTe、HgTe具有閃鋅礦結構。④Ⅰ-Ⅶ族:Ⅰ族元素Cu、Ag、Au和Ⅶ族元素Cl、Br、I形成的化合物,其中CuBr、CuI具有閃鋅礦結構。⑤Ⅴ-Ⅵ族:Ⅴ族元素As、Sb、Bi和Ⅵ族元素S、Se、Te形成的化合物具有的形式,如Bi2Te3、Bi2Se3、Bi2S3、As2Te3等是重要的溫差電材料。⑥第四周期中的B族和過渡族元素Cu、Zn、Sc、Ti、V、Cr、Mn、Fe、Co、Ni的氧化物,為主要的熱敏電阻材料。⑦某些稀土族元素Sc、Y、Sm、Eu、Yb、Tm與Ⅴ族元素N、As或Ⅵ族元素S、Se、Te形成的化合物。除這些二元系化合物外還有它們與元素或它們之間的固溶體半導體,例如Si-AlP、Ge-GaAs、InAs-InSb、AlSb-GaSb、InAs-InP、GaAs-GaP等。研究這些固溶體可以在改善單一材料的某些性能或開辟新的應用范圍方面起很大作用。
(半導體材料元素結構圖)
半導體材料
三元系包括:族:這是由一個Ⅱ族和一個Ⅳ族原子去替代Ⅲ-Ⅴ族中兩個Ⅲ族原子所構成的。例如ZnSiP2、ZnGeP2、ZnGeAs2、CdGeAs2、CdSnSe2等。族:這是由一個Ⅰ族和一個Ⅲ族原子去替代Ⅱ-Ⅵ族中兩個Ⅱ族原子所構成的,如CuGaSe2、AgInTe2、AgTlTe2、CuInSe2、CuAlS2等。:這是由一個Ⅰ族和一個Ⅴ族原子去替代族中兩個Ⅲ族原子所組成,如Cu3AsSe4、Ag3AsTe4、Cu3SbS4、Ag3SbSe4等。此外,還有它的結構基本為閃鋅礦的四元系(例如Cu2FeSnS4)和更復雜的無機化合物。
3、有機化合物半導體:已知的有機半導體有幾十種,熟知的有萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,它們作為半導體尚未得到應用。
4、非晶態與液態半導體:這類半導體與晶態半導體的最大區別是不具有嚴格周期性排列的晶體結構。
二、半導體材料實際運用
制備不同的半導體器件對半導體材料有不同的形態要求,包括單晶的切片、磨片、拋光片、薄膜等。半導體材料的不同形態要求對應不同的加工工藝。常用的半導體材料制備工藝有提純、單晶的制備和薄膜外延生長。
半導體材料所有的半導體材料都需要對原料進行提純,要求的純度在6個「9」以上,最高達11個「9」以上。提純的方法分兩大類,一類是不改變材料的化學組成進行提純,稱為物理提純;另一類是把元素先變成化合物進行提純,再將提純後的化合物還原成元素,稱為化學提純。物理提純的方法有真空蒸發、區域精製、拉晶提純等,使用最多的是區域精製。化學提純的主要方法有電解、絡合、萃取、精餾等,使用最多的是精餾。由於每一種方法都有一定的局限性,因此常使用幾種提純方法相結合的工藝流程以獲得合格的材料。
(半導體材料)
絕大多數半導體器件是在單晶片或以單晶片為襯底的外延片上作出的。成批量的半導體單晶都是用熔體生長法製成的。直拉法應用最廣,80%的硅單晶、大部分鍺單晶和銻化銦單晶是用此法生產的,其中硅單晶的最大直徑已達300毫米。在熔體中通入磁場的直拉法稱為磁控拉晶法,用此法已生產出高均勻性硅單晶。在坩堝熔體表面加入液體覆蓋劑稱液封直拉法,用此法拉制砷化鎵、磷化鎵、磷化銦等分解壓較大的單晶。懸浮區熔法的熔體不與容器接觸,用此法生長高純硅單晶。水平區熔法用以生產鍺單晶。水平定向結晶法主要用於制備砷化鎵單晶,而垂直定向結晶法用於制備碲化鎘、砷化鎵。用各種方法生產的體單晶再經過晶體定向、滾磨、作參考面、切片、磨片、倒角、拋光、腐蝕、清洗、檢測、封裝等全部或部分工序以提供相應的晶片。
在單晶襯底上生長單晶薄膜稱為外延。外延的方法有氣相、液相、固相、分子束外延等。工業生產使用的主要是化學氣相外延,其次是液相外延。金屬有機化合物氣相外延和分子束外延則用於制備量子阱及超晶格等微結構。非晶、微晶、多晶薄膜多在玻璃、陶瓷、金屬等襯底上用不同類型的化學氣相沉積、磁控濺射等方法製成。
三、半導體材料發展現狀
相對於半導體設備市場,半導體材料市場長期處於配角的位置,但隨著晶元出貨量增長,材料市場將保持持續增長,並開始擺脫浮華的設備市場所帶來的陰影。按銷售收入計算,
半導體材料日本保持最大半導體材料市場的地位。然而台灣、ROW、韓國也開始崛起成為重要的市場,材料市場的崛起體現了器件製造業在這些地區的發展。晶圓製造材料市場和封裝材料市場雙雙獲得增長,未來增長將趨於緩和,但增長勢頭仍將保持。
(半導體材料)
美國半導體產業協會(SIA)預測,2008年半導體市場收入將接近2670億美元,連續第五年實現增長。無獨有偶,半導體材料市場也在相同時間內連續改寫銷售收入和出貨量的記錄。晶圓製造材料和封裝材料均獲得了增長,預計今年這兩部分市場收入分別為268億美元和199億美元。
日本繼續保持在半導體材料市場中的領先地位,消耗量占總市場的22%。2004年台灣地區超過了北美地區成為第二大半導體材料市場。北美地區落後於ROW(RestofWorld)和韓國排名第五。ROW包括新加坡、馬來西亞、泰國等東南亞國家和地區。許多新的晶圓廠在這些地區投資建設,而且每個地區都具有比北美更堅實的封裝基礎。
晶元製造材料佔半導體材料市場的60%,其中大部分來自硅晶圓。硅晶圓和光掩膜總和占晶圓製造材料的62%。2007年所有晶圓製造材料,除了濕化學試劑、光掩模和濺射靶,都獲得了強勁增長,使晶圓製造材料市場總體增長16%。2008年晶圓製造材料市場增長相對平緩,增幅為7%。預計2009年和2010年,增幅分別為9%和6%。
半導體材料市場發生的最重大的變化之一是封裝材料市場的崛起。1998年封裝材料市場佔半導體材料市場的33%,而2008年該份額預計可增至43%。這種變化是由於球柵陣列、晶元級封裝和倒裝晶元封裝中越來越多地使用碾壓基底和先進聚合材料。隨著產品便攜性和功能性對封裝提出了更高的要求,預計這些材料將在未來幾年內獲得更為強勁的增長。此外,金價大幅上漲使引線鍵合部分在2007年獲得36%的增長。
與晶圓製造材料相似,半導體封裝材料在未來三年增速也將放緩,2009年和2010年增幅均為5%,分別達到209億美元和220億美元。除去金價因素,且碾壓襯底不計入統計,實際增長率為2%至3%。
四、半導體材料戰略地位
20世紀中葉,單晶硅和半導體晶體管的發明及其硅集成電路的研製成功,導致了電子工業革命;20世紀70年代初石英光導纖維材料和GaAs激光器的發明,促進了光纖通信技術迅速發展並逐步形成了高新技術產業,使人類進入了信息時代。超晶格概念的提出及其半導體超晶格、量子阱材料的研製成功,徹底改變了光電器件的設計思想,使半導體器件的設計與製造從「雜質工程」發展到「能帶工程」。納米科學技術的發展和應用,將使人類能從原子、分子或納米尺度水平上控制、操縱和製造功能強大的新型器件與電路,深刻地影響著世界的政治、經濟格局和軍事對抗的形式,徹底改變人們的生活方式
❽ 半導體的發展史及其未來發展趨勢
1833年,英國巴拉迪最先發現硫化銀的電阻隨著溫度的變化情況不同於一般金屬,一般情況下,金屬的電阻隨溫度升高而增加,但巴拉迪發現硫化銀材料的電阻是隨著溫度的上升而降低。這是半導體現象的首次發現。
不久, 1839年法國的貝克萊爾發現半導體和電解質接觸形成的結,在光照下會產生一個電壓,這就是後來人們熟知的光生伏特效應,這是被發現的半導體的第二個特徵。
在1874年,德國的布勞恩觀察到某些硫化物的電導與所加電場的方向有關,即它的導電有方向性,在它兩端加一個正向電壓,它是導通的;如果把電壓極性反過來,它就不導電,這就是半導體的整流效應,也是半導體所特有的第三種特性。同年,舒斯特又發現了銅與氧化銅的整流效應。
1873年,英國的史密斯發現硒晶體材料在光照下電導增加的光電導效應,這是半導體又一個特有的性質。 半導體的這四個效應,(jianxia霍爾效應的余績——四個伴生效應的發現)雖在1880年以前就先後被發現了,但半導體這個名詞大概到1911年才被考尼白格和維斯首次使用。而總結出半導體的這四個特性一直到1947年12月才由貝爾實驗室完成。
很多人會疑問,為什麼半導體被認可需要這么多年呢?主要原因是當時的材料不純。沒有好的材料,很多與材料相關的問題就難以說清楚。
半導體於室溫時電導率約在10ˉ10~10000/Ω·cm之間,純凈的半導體溫度升高時電導率按指數上升。半導體材料有很多種,按化學成分可分為元素半導體和化合物半導體兩大類。除上述晶態半導體外,還有非晶態的有機物半導體等和本徵半導體。
1982年,江蘇無錫的江南無線電器材廠(742廠)IC生產線建成驗收投產,這是一條從日本東芝公司全面引進彩色和黑白電視機集成電路生產線,不僅擁有部封裝,而且有3英寸全新工藝設備的晶元製造線,不但引進了設備和凈化廠房及動力設備等「硬體」,而且還引進了製造工藝技術「軟體」。這是中國第一次從國外引進集成電路技術。第一期742廠共投資2.7億元(6600萬美元),建設目標是月投10000片3英寸矽片的生產能力,年產2648萬塊IC成品,產品為雙極型消費類線性電路,包括電視機電路和音響電路。到1984年達產,產量達到3000萬塊,成為中國技術先進、規模最大,具有工業化大生產的專業化工廠。 1982年10月,國務院為了加強全國計算機和大規模集成電路的領導,成立了以萬里副總理為組長的「電子計算機和大規模集成電路領導小組」,制定了中國IC發展規劃,提出「六五」期間要對半導體工業進行技術改造。 1983年,針對當時多頭引進,重復布點的情況,國務院大規模集成電路領導小組提出「治散治亂」,集成電路要「建立南北兩個基地和一個點」的發展戰略,南方基地主要指上海、江蘇和浙江,北方基地主要指北京、天津和沈陽,一個點指西安,主要為航天配套。
1986年,電子部廈門集成電路發展戰略研討會,提出「七五」期間我國集成電路技術「531」發展戰略,即普及推廣5微米技術,開發3微米技術,進行1微米技術科技攻關。 1988年,871廠紹興分廠,改名為華越微電子有限公司。 1988年9月,上無十四廠在技術引進項目,建了新廠房的基礎上,成立了中外合資公司――上海貝嶺微電子製造有限公司。 1988年,在上海元件五廠、上無七廠和上無十九廠聯合搞技術引進項目的基礎上,組建成中外合資公司――上海飛利浦半導體公司(現在的上海先進)。 1989年2月,機電部在無錫召開「八五」集成電路發展戰略研討會,提出了「加快基地建設,形成規模生產,注重發展專用電路,加強科研和支持條件,振興集成電路產業」的發展戰略。 1989年8月8日,742廠和永川半導體研究所無錫分所合並成立了中國華晶電子集團公司。
1990年10月,國家計委和機電部在北京聯合召開了有關領導和專家參加的座談會,並向黨中央進行了匯報,決定實施九O八工程。 1991年,首都鋼鐵公司和日本NEC公司成立中外合資公司――首鋼NEC電子有限公司。 1995年,電子部提出「九五」集成電路發展戰略:以市場為導向,以CAD為突破口,產學研用相結合,以我為主,開展國際合作,強化投資,加強重點工程和技術創新能力的建設,促進集成電路產業進入良性循環。 1995年10月,電子部和國家外專局在北京聯合召開國內外專家座談會,獻計獻策,加速我國集成電路產業發展。11月,電子部向國務院做了專題匯報,確定實施九0九工程。 1997年7月17日,由上海華虹集團與日本NEC公司合資組建的上海華虹NEC電子有限公司組建,總投資為12億美元,注冊資金7億美元,華虹NEC主要承擔「九0九」工程超大規模集成電路晶元生產線項目建設。 1998年1月,華晶與上華合作生產MOS圓片合約簽定,有效期四年,華晶晶元生產線開始承接上華公司來料加工業務。 1998年1月18日,「九0八」 主體工程華晶項目通過對外合同驗收,這條從朗訊科技公司引進的0.9微米的生產線已經具備了月投6000片6英寸圓片的生產能力。 1998年1月,中國華大集成電路設計中心向國內外用戶推出了熊貓2000系統,這是我國自主開發的一套EDA系統,可以滿足亞微米和深亞微米工藝需要,可處理規模達百萬門級,支持高層次設計。 1998年2月,韶光與群立在長沙簽訂LSI合資項目,投資額達2.4億元,合資建設大規模集成電路(LSI)微封裝,將形成封裝、測試集成電路5200萬塊的生產能力。 1998年2月28日,我國第一條8英寸硅單晶拋光片生產線建成投產,這個項目是在北京有色金屬研究總院半導體材料國家工程研究中心進行的。 1998年3月16日,北京華虹集成電路設計有限責任公司與日本NEC株式會社在北京長城-飯店舉行北京華虹NEC集成電路設計公司合資合同簽字儀式,新成立的合資公司其設計能力為每年約200個集成電路品種,並為華虹NEC生產線每年提供8英寸矽片兩萬片的加工訂單。 1998年4月,集成電路「九0八」工程九個產品設計開發中心項目驗收授牌,這九個設計中心為信息產業部電子第十五研究所、信息產業部電子第五下四研究所、上海集成電路設計公司、深圳先科設計中心、杭州東方設計中心、廣東專用電路設計中心、兵器第二一四研究所、北京機械工業自動化研究所和航天工業771研究所。這些設計中心是與華晶六英寸生產線項目配套建設的。 1998年6月,上海華虹NEC九0九二期工程啟動。 1998年6月12日,深港超大規模集成電路項目一期工程――後工序生產線及設計中心在深圳賽意法微電子有限公司正式投產,其集成電路封裝測試的年生產能力由原設計的3.18億塊提高到目前的7.3億塊,並將擴展的10億塊的水平。 1998年10月,華越集成電路引進的日本富士通設備和技術的生產線開始驗收試制投 片,-該生產線以雙極工藝為主、兼顧Bi-CMOS工藝、2微米技術水平、年投5英寸矽片15萬片、年產各類集成電路晶元1億只能力的前道工序生產線及動力配套系統。 1998年3月,由西安交通大學開元集團微電子科技有限公司自行設計開發的我國第一個-CMOS微型彩色攝像晶元開發成功,我國視覺晶元設計開發工作取得的一項可喜的成績。 1999年2月23日,上海華虹NEC電子有限公司建成試投片,工藝技術檔次從計劃中的0.5微米提升到了0.35微米,主導產品64M同步動態存儲器(S-DRAM)。這條生產線的建-成投產標志著我國從此有了自己的深亞微米超大規模集成電路晶元生產線。
❾ 全球半導體產業發展呈現怎樣的態勢
據悉,全球半導體產業大掀整並潮,高通(Qualcomm)計劃分拆,豪威(Omnivision)被陸資買下、Marvell和超微(AMD)亦是大陸囊中物,日月光更公開要收購矽品,現在傳出GlobalFoundries也被大陸大基金相中,整並潮正式吹向晶圓代工產業,這不但會牽動全球晶圓代工版圖,更攸關兩岸半導體勢力消長。
而2015年下旬台積電也加速在大陸市場的布局,隨著登陸設立12寸晶圓廠開放獨資,台積電也加速遞件申請到大陸設立12寸晶圓廠。攤開全球晶圓代工市佔率排名,台積電已穩坐龍頭。據前瞻產業研究院發布的《2015-2020年中國代工行業(OEM)發展趨勢與轉型升級分析報告》顯示,2013年世界最大的l3家公司的合計營收佔到全體代工業的91%,且台積電久已獨占鰲頭,其2013年營收比上年激增17%,接近200億美元,比Global Foundries大出4倍之多。
圖表:世界最大13家晶圓代工企業(單位:百萬美元,%)
資料來源:前瞻產業研究院整理
您可能感興趣的研究:
2016-2021年中國重點地區文物保護工程市場前瞻與投資戰略規劃分析報告2016-2021年中國直接耐曬黑19行業市場前瞻與投資規劃分析報告2016-2021年中國呼叫中心產業市場前瞻與投資戰略規劃分析報告2015-2020年中國呼叫中心產業市場競爭格局與領先企業分析報告2016-2021年中國調節平台行業市場前瞻與投資規劃分析報告2016-2021年中國花卉行業市場前瞻與投資規劃分析報告更多研究報告>>
2014年,台積電以52%市佔率繼續穩坐龍頭,較前一年47%再躍進一步,聯電以市佔率9.9%重回二哥地位,GlobalFoundries年營收衰退,因此退回三哥,市佔率為9.4%,三星以市佔率5.1%排名第四,中芯國際以市佔率4.2%排名第五。
全球晶圓代工中台積電獨大的局面,近期不可能改變。不過大環境變動太快,整並潮發生頻率之高,幾乎每周都有一家半導體公司將被整合消滅。並且隨著隨著英特爾、三星等跨入晶圓代工,大陸半導體廠也都押重本投資,未來晶圓代工產業競爭劇烈。
另外一方面,大陸半導體勢力的飛快崛起,加緊並購所有產業領域的半導體廠,不乏國際大廠如豪威、星科金朋等,現在更傳出大基金對GlobalFoundries有興趣,未來兩岸的半導體產業格局變動也將引起更大的關注。