1. 储能有前途吗
"相信随着“十四五”整体规划的顶层设计以及推动实施,我国的储能产业必将形版成较为完权整的产业体系,成为能源领经济新增长点。
关于储能行业未来发展前景,可以参考中关村储能产业技术联盟出版的《储能产业研究白皮书》了解下:
《储能产业研究白皮书2020》分保守场景和理想场景分别对2020-2024年电化学储能的市场规模进行预测。其中:保守场景下,2020年,电化学储能市场继续稳步发展,累计装机规模达到2726.7MW。 “十四五”期间,随着更多利好政策的发布,电化学储能应用的支持力度将逐步加大,市场规模不断增加,年复合增长率(2020-2024)将保持在55%左右,预计到2024年底,电化学储能的市场装机规模将超过15GW。
理想场景下,2020年,电化学储能在保持稳步发展的同时,还将落地一些2019年规划的、受政策影响而未建设的项目,累计装机规模达到3092.2MW。“十四五”期间,充分考虑各类直接或间接政策的支持,年复合增长率(2020-2024)有望超过65%,预计到2024年底,电化学储能的市场装机规模将接近24GW。"
2. 储能行业的测试需求是如何发展的
储能行业是目前非常热门的行业之一,当前的测试需求基本和光伏行业一致,主要测试储能逆变器的输入电压、电流、功率、谐波、效率等参数,应用的仪器也主要是光伏那一类,如功率分析仪、示波器、数采等设备,具体的测试需求升级建议参考下ZLG致远电子的测试仪器,他们在这一块研究的还是挺多的,尤其是功率分析仪,据说已经支持了储能的自动化测试。
3. 相变储能材料的发展历史
相变储能建筑材料
相变储能建筑材料 在其物相变化过程中,可从环境中吸收热(冷)量或向环境中放出热量,从而达到能量储存和释放及调节能量需求和供给失配的目的。它兼备普通建材和相变材料两者的优点,能够吸收和释放适量的热能;能够和其他传统建筑材料同时使用;不需要特殊的知识和技能来安装使用蓄热建筑材料;能够用标准生产设备生产;有显著的节能降耗效应,在经济效益上具有竞争性。
相变储能建筑材料应用于建材的研究始于1982年,由美国能源部太阳能公司发起。20世纪90年代以PCM处理建筑材料(如石膏板、墙板与混凝土构件等)的技术发展起来了。随后,PCM在混凝土试块、石膏墙板等建筑材料中的研究和应用一直方兴未艾。1999年,国外又研制成功一种新型建筑材料-固液共晶相变材料,在墙板或轻型混凝土预制板中浇注这种相变材料,可以保持室内温度适宜。另欧美有多家公司利用PCM生产销售室外通讯接线设备和电力变压设备的专用小屋,可在冬夏天均保持在适宜的工作温度。此外,含有PCM的沥青地面或水泥路面,可以防止道路、桥梁、飞机跑道等在冬季深夜结冰。
国内外研究现状
国外对相变储能材料的研究工作始于20世纪60年代。最早是以节能为目的,从太阳能和风能
的利用及废热回收,经过不断的发展,逐渐扩展到化工、航天、电子等领域。近年来最主要的研究和应用集中在建筑物的集中空调、采暖及被动式太阳房等领域。国外研究机构和科研人员对蓄热材料的理论研究工作,尤其是对蓄热材料的组成、蓄热容量随热循环变化情况、相变寿命、储存设备等进行了详细的研究,在实际应用上也取得了很大进展。
相对于已经进入实用阶段的发达国家,我国在20世纪70年代末80年代初才开始对蓄热材料进行研究,所以国内相变储能材料的理论和应用研究还比较薄弱。上世纪90年代中期以来,国内研
究重点开始转向有机相变材料和复合定形相变材料的研究开发。
最新的研究进展
1 建筑节能领域
相变储能材料作为一种热能储存材料在建筑节能领域得到了广泛应用,如相变混凝土、相变墙
板等。它通过相变材料的相变过程储存能量,从而实现对建筑的温度调节、节省电能等。
吴晓琳等采用聚氨酯硬质泡沫作为封装材料,十八烷为相变材料,以自制纳米氧化硅作为稳定剂与成核剂,采用原位封装的方式制备了一种聚氨酯复合相变储能材料。结果表明该聚氨酯基复合相变材料具有微纳米级均匀的微观结构,相变材料均匀地分布在聚氨酯中,相变特性不受聚氨酯
的影响,具有较高的结构稳定性。唐正生等将浸渍有Na2SO4的稻秆与特定组成的硅酸盐水泥浆体拌合,经模压制备出了一种稻秆/Na2SO4定型相变板材。测试结果表明该板材具有强度高、阻燃性好、蓄热密度大等优点,且经实验证实稻秆能装载自身质量4的Na2SO4·10H2O,板材经30次相变循环后质量损失为1.87%,因此具有很高的实际应用价值。
2 电子信息领域
近年来,电子技术的迅速发展,使电子设备越来越趋向于微型化、高集成化和大功率化,抗热
冲击和使用寿命等问题成为制约电子技术发展的瓶颈,因而相变技术被应用到了电子信息领域,并逐渐成为研究的热点。
高学农等采用物理吸附法制备了一种石蜡/膨胀石墨复合相变储能材料,具有较高的相变焓和良好的传热性能。将其应用于电子器件的热管理中,通过模拟芯片实验研究了该石蜡/膨胀石墨复合
相变材料控温电子散热器的性能,结果表明可有效降低模拟芯片的升、降温速率,延长散热器的控温时间,降低电子器件因温度瞬间升高而烧坏的可能性,实现对电子器件的保护。
中科院上海微系统与信息技术研究所经过多年努力,发现了自主SiSbTe体系相变材料,
了SiSbTe具有低于传统Ge2Sb2Te5的功耗、更高的数据保持力和更快的相变速度。且经过工程化反复验证,确定了SixSb2Te3体系,当x在3-3.5区间内,PCRAM单元在数据保持能力、粘附能力、体积变化、疲劳使用寿命、操作可靠性、功耗等方面均优于Ge2Sb2Te5,并已在12寸工艺平台上进行了实验。该材料体系的发现对于打破国际技术垄断,推动我国自主开发的PCRAM芯片具有重要的学术价值和商业价值。
3纤维纺织领域
相变纤维材料的开发为高功能的智能纺织品研究提供了新的途径。相变纤维及其纺织品可以满足消费者在“多功能”、“舒适性”方面的要求,因而具有很大的应用前景。
韩娜等以正构烷烃和聚合物相变材料为芯层,聚丙烯为纤维的皮层,采用双组分熔融复合熔融纺丝法制备储热调温纤维。采用扫描电子显微镜(SEM)、差示扫描量热仪(DSC)和单纤维电子强力仪等观察纤维的形貌,研究纤维的热力学性能和力学性能。结果表明:纤维的结构致密,具有明显的皮芯分界,相变材料质量分数为28%时,纤维的热焓可达到36~40 J/g,对纤维进行2.75倍的牵伸后处理,断裂强度和伸长率分别为2.3 cN/dtex和29%,可满足纺织服装的应用要求。
张梅等[13]利用静电纺丝法制备了一种具有相变性能的PVA/PEG复合纳米纤维,并对制备工艺参数进行了优化。结果表明,PVA/PEG共混溶液通过静电纺丝可获得分布较均匀的复合纤维,但PEG的存在影响PVA的成纤效果,其中PVA/PEG的百分含量为4:6的混合溶液成纤较好;通过纺丝参数的研究,确定了最佳的纺丝条件,15Kv/10CM;PVA/PEG复合纳米纤维具有可逆的相转变过程,Tm和Tc值与PVA/PEG质量百分含量和PEG2000与PEG4000的共混比例有关。
4军事领域
由于相变材料具有高的储能密度,并且在吸热(放热)过程中具有温度不变的特性,因而在热红外伪装和热红外假目标方面也有广阔的应用前景.
孙文艳等采用微胶囊技术,对正十四烷、正十八烷、石蜡3种相变材料进行封装,将其制成红外隐身涂料并应用于军事目标中,以控制目标表面热惯量及表面温度,消除或降低目标与背景的红外辐射差别,从而实现了对背景红外特征的模拟。将制备的涂料涂覆在卡车模型上,结果表明在
荒漠丘陵热图背景下明显提高了目标的红外隐身性能。
未来展望以及发展趋势
随着人们对节能问题的日益重视以及环境保护意识的逐步增强,相变储能材料必将在将来发挥更大的作用,其应用前景也会越来越广阔。但是,目前在相变材料研发的过程中仍有许多需要解决的问题,如稳定性差、寿命短等,因此相变材料未来的研究重点是根据环境条件要求,研制出具有合适的相变温度与相变焓,并且能够长期使用,物理化学性能稳定、经济环保的相变材料。
4. 中国储能行业的发展现状及前景分析
我国储能方式中抽水储能占九层以上,但近年来电化学储能的占比在不断上升。2020年三大运营商5G投入相比2019年成倍提高。中国移动2020年预期资本开支为1798亿元,其中5G相关投资计划约为1000亿元,而2019年是240亿元,今年足足翻了5倍。随着5G基站的爆发性建设,预计将会带来磷酸铁锂储能电池需求大幅增长。
储能场景分析--发电侧、输配电侧和用电侧
从电力系统角度看,储能的应用场景可分为发电侧、输配电侧和用电侧三大场景,分别是发电侧、输配电侧和用电侧。发电侧主要用于平滑新能源发电,平滑新能源输出,联合调频等;输配电侧主要用于缓解线路阻塞、为配电设备提供支持和省级;用电侧主要用于削峰填谷电价套利、光伏+储能、通信基站备用电源、数据中心备用电源,以及构建微电网等。
——以上数据来源于前瞻产业研究院《中国储能行业市场前瞻与投资预测分析报告》。
5. 如何了解储能
从字面意义就可以看出,“储能”即“能量的存储”,指将电能、热能、机械能等不同形式的能源转化成其他形式的能量存储起来,在需要时将其转化成所需要的能量形式释放出去。
电池是最常见的储能设备,不过本文探讨的“储能系统”技术复杂度更高、规模更大。一般来说,储能系统可以分为以下几大类:
抽水蓄能是目前发展最成熟、装机容量最大的储能技术,即利用电力负荷低谷时的电能抽水至上水库,在电力负荷高峰期再放水至下水库发电。抽水蓄能可为电力系统提供调峰、调频、事故备用等多种辅助服务。
除抽水蓄能外,电化学储能是发展最快的储能技术。其中锂离子电池具有明显的相对优势,锂电池中的各种细分种类如磷酸铁锂和三元电池等各有优劣,目前还难分伯仲
6. 储能材料技术专业就业前景
一、储能专业有哪来些?
结合自《储能技术专业学科发展行动计划(2020—2024年)》和《普通高等学校高等职业教育(专科)专业目录》2018增补专业可知,目前我国的储能专业主要三种类型,具体如下:
1、即将开设的
储能技术、储能材料、储能管理等新专业。
2、将改造升级的
材料物理、材料化学、新能源科学与工程、新能源材料与器件等已有专业。
3、已有的(唯一)
储能材料技术(专科)
相关学科:
动力工程及工程热物理、电气工程、化学科学与技术、物理学、化学等。
二、储能材料就业前景
随着储能产业的蓬勃发展,对各层次人才需求也呈现井喷式增长。
而当下储能企业人才现状:
1、工人素质较低
目前企业员工多为高中及以下学历人员构成,专业素养有限。
2、新员工知识结构单一
以动力电池的制造及应用为代表的储能技术属于交叉性较强的新领域,大部分员工掌握的知识过于局限,需要再次培训,花费成本。
3、相关企业人才需求大
储能产业生产过程中已使用了大量的自动化设备,各生产环节之间的衔接仍然是以人工为主,目前仍需吸纳大量的相关专门人才。
综合来看,储能材料技术专业是一门紧跟产业需求设立的专业,拥有十分良好的就业前景。
7. 储能现状怎么样
从2000年开始,全球储能产业发展加速,根据中国能源研究会储能专委会/中关村版储能权产业技术联盟(CNESA)全球储能项目库的不完全统计,截至2019年底,全球投运储能项目累计装机规模184.6GW,同比增长1.9%,增速平稳。以电化学为主的新兴电力储能技术发展迅速,其累计装机规模已达到9520.5MW,同比增长43.7%。电力储能技术成为提升各国能源清洁化水平、提高电力系统运行效率和增强安全可靠性的重要手段,成为这些国家能源发展战略中不可或缺的一部分。储能作为电力系统中曾经缺失的一环,必然在未来可再生能源规模化发展、电力系统高效智能化发展和实现能源互联发展中发挥重要作用。我们预计到2020年,全球电化学储能市场的累计装机规模将会达到14.26GW,2025年累计规模将达到78.21GW,到2030年累计规模将达到192.58GW。未来,新兴储能产业将成为国家科技创新产业的重要源泉和新增经济增长点。
8. 储能行业前景如何
"相信随着“十四五”整体规划的顶层设计以及推动实施,我国的储能产业必将形成较为完整的产业体系,成为能源领经济新增长点。
9. 储能的发展现状
对新能源和可再生抄能源的研究和开袭发,寻求提高能源利用率的先进方法,已成为全球共同关注的首要问题。对中国这样一个能源生产和消费大国来说,既有节能减排的需求,也有能源增长以支撑经济发展的需要,这就需要大力发展储能产业。
分析报告显示,日益增长的能源消费,特别是煤炭、石油等化石燃料的大量使用对环境和全球气候所带来的影响使得人类可持续发展的目标面临严峻威胁。据预测,如按现有开采不可再生能源的技术和连续不断地日夜消耗这些化石燃料的速率来推算,煤、天然气和石油的可使用有效年限分别为100-120年、30-50年和18-30年。显然,21世纪所面临的最大难题及困境可能不是战争及食品,而是能源。
2016年1月19日,世界能源署表示,由于新太阳能电池技术和其他科技进步促进价格下跌,未来15年,电池储能成本将下滑70%。
储能本身不是新兴的技术,但从产业角度来说却是刚刚出现,正处在起步阶段。到目前为止,中国没有达到类似美国、日本将储能当作一个独立产业加以看待并出台专门扶持政策的程度,尤其在缺乏为储能付费机制的前提下,储能产业的商业化模式尚未成形。
10. 储能行业未来发展如何
5G+调峰将会带来磷酸铁锂储能电池需求大幅增长
截至2018年,三大运营商共用4G基站478万个,其中中国移动241万个,中国电信138万个,中国联通99万个。由于5G通信频谱分布在高频段,信号衰减更快,覆盖能力减弱,因此相比4G,通信信号覆盖相同的区域,5G基站的数量将增加。
截至2019年底,中国移动、中国电信、中国联通三大运营商的自建5G基站分别为5万站、4万站和4万站,中国电信和中国联通共建2万站5G基站。前瞻统计三大运营商截至2019年底拥有存量5G基站15万站。
三大运营商近日发布的财报显示,5G建设开局良好。中国移动积极推进5G建设,截至2月底,其5G基站已经超过8万个。按照这个发展速度,预计在未来几年建设进入高峰期,假设2020-2023年分别建设5G基站70、90、100、110万个。根据天风证券计算,传统4G基站单站功耗780-930W,而5G基站单站功耗2700W左右。以应急时长4h计算,单个5G宏基站备用电源需要10.8kWh。相比4G,5G单站功率提升约2倍且基站个数预计大幅提升,对应储能需求也降增长。经测算,预计5G基站带来的备用电源储能需求2020-2023年分别为7.6、9.7、10.8、11.9GWh。若5G+调峰的应用场景实现,预计将会带来磷酸铁锂储能电池需求大幅增长。
——以上数据来源于前瞻产业研究院《中国储能行业市场前瞻与投资预测分析报告》。