❶ 大数据背景下贵州教育的思考1500字
随着互联网的飞速发展,特别是随着社交网络、云计算以及多种传感器的广泛应用,以数量庞大,种类众多,时效性强为特征的非结构化数据不断涌现,数据的重要性愈发凸显, 2011 年,麦肯锡在题为《海量数据,创新、竞争和提高生成率的下一个新领域》的研究报告中指出,数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素;而人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。据IDC 预测,至2020 年全球将拥有35ZB 的数据量,大量数据实时地影响我们的工作、学习和生活,乃至国家经济、社会发展,毫无疑问,大数据对教育领域也带来巨大的影响和冲击。作为一线教师,结合自己的工作岗位,探讨一下大数据背景下市场营销教学受到的影响和冲击,以便及时做好调整与应对,保证和提高教学质量。
一、大数据的内涵与特征
大数据是一个较为抽象的概念,至今尚无确切、统一的定义。维基网络对于“数据”一词的定义是:“数据(Data)是载荷或记录信息的按一定规则排列组合的物理符号,可以是数字、文字、图像,也可以是计算机代码。对信息的接收始于对数据的接收,对信息的获取只能通过对数据背景的解读。”维基网络对于大数据的定义:“大数据指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理并整理成为帮助企业经营决策目的的资讯。”麦肯锡的定义:大数据是指无法在一定时间内用传统数据库软件工具对其内容进行采集、存储、管理和分析的数据集合。
“大数据”本身并不是一种新的技术,也不是一种新的产品,而是我们这个时代出现的一种现象。美国IBM认为大数据具有“3V”特点,即种类(Variety)多、速度(Velocity)快、容量(Volume)大;国际数据咨询公司IDC则认为满足“4V”即:Variety(种类多)、Velocity(流量快)、Volume(容量大)、Value(价值高)指标的数据才可称为大数据。这些特性使得大数据区别于传统的数据概念。大数据的概念与“海量数据”不同,它不仅仅是用来描述大量的数据,还更进一步指出数据的复杂形式、数据的快速时间特性以及对数据的分析、处理等专业化处理,最终获得有价值信息的能力。
涂子沛先生在《大数据》一书中指出:“‘大数据’之大,不仅仅意味着数据之多,还意味着每个数据都能在互联网上获得生命,产生智能,散发活力和光彩。”社会学教授加里?金称“这是一场革命,庞大的数据资源使各个领域开始了量化进程,无论学界、商界还是政府,所有领域都将开始这种进程”。
❷ 大数据和人工智能哪个好
想了解大数据与人工智能孰优孰劣,首先我们得从认知和理解大数据和人工智能的概念开始。
1、大数据
大数据是物联网、Web系统和信息系统发展的综合结果,其中物联网的影响最大,所以大数据也可以说是物联网发展的必然结果。大数据相关的技术紧紧围绕数据展开,包括数据的采集、整理、传输、存储、安全、分析、呈现和应用等等。目前,大数据的价值主要体现在分析和应用上,比如大数据场景分析等。
2、人工智能
人工智能是典型的交叉学科,研究的内容集中在机器学习、自然语言处理、计算机视觉、机器人学、自动推理和知识表示等六大方向,目前机器学习的应用范围还是比较广泛的,比如自动驾驶、智慧医疗等领域都有广泛的应用。人工智能的核心在于“思考”和“决策”,如何进行合理的思考和合理的行动是目前人工智能研究的主流方向。
3、大数据与人工智能孰好孰坏
大数据和人工智能虽然关注点并不相同,但是却有密切的联系,一方面人工智能需要大量的数据作为“思考”和“决策”的基础,另一方面大数据也需要人工智能技术进行数据价值化操作,比如机器学习就是数据分析的常用方式。在大数据价值的两个主要体现当中,数据应用的主要渠道之一就是智能体(人工智能产品),为智能体提供的数据量越大,智能体运行的效果就会越好,因为智能体通常需要大量的数据进行“训练”和“验证”,从而保障运行的可靠性和稳定性。
目前大数据相关技术已经趋于成熟,相关的理论体系已经逐步完善,而人工智能尚处在行业发展的初期,理论体系依然有巨大的发展空间。从学习的角度来说,如果从大数据开始学习是个不错的选择,从大数据过渡到人工智能也会相对比较容易。总的来说,两个技术之间并不存在孰优孰劣的问题,发展空间都非常大。
❸ 大数据环境下政府信息化建设的思考
大数据环境下政府信息化建设的思考
信息技术与经济社会的交汇融合引发了数据迅猛增长,通过对大数据进行采集、存储和关联分析,从中可以发现新知识、创造新价值,这是新一代的信息技术和服务业态。简单地说,大数据是指可以进行捕捉、管理和处理的数据集合。从技术上看,大数据分析常和云计算联系到一起,大数据与云计算密不可分。在“创新社会治理体制”的时代背景下,我们必须牢牢抓住大数据为政府治理提供的创新机遇,切实提高各级政府部门的治理能力。
我国政府信息化建设存在的障碍因素。一是机制与观念方面的因素。传统政府运作体制和机制的障碍;缺乏科学的规划与标准;政府公务员在信息化建设的思想观念方面还有待提升。二是管理因素的影响。首先是缺乏科学统一的管理工作;其次是政府多数网站建设水平不高;再次是对信息基础设施的投资与建设不足。三是政府信息化管理与信息立法方面的因素。政府信息化管理存在着复杂性;政府信息化的安全性不高;立法工作滞后。四是信息发展落后与人员素质的影响。主要表现在我国信息化水平不高;地区化水平差异很大;政府公务人员整体素质偏低。
加快政府信息化建设的对策措施。一是应确立符合工作实际的政府信息化战略思想。第一,在政府信息化的过程中,政府部门个别既得利益者必然会反对信息化工作的开展,需要对现阶段的政府机构进行重组,对服务职能进行二次分配,只有采取该种措施,才能保障各项政府信息得到顺利实施;第二,我国现有的规定,缺乏统一的技术标准,各部门分管各自的事情,为此,我们必须做好整体规划工作,制定出科学、统一的标准,避免出现各自为战的问题。这在其他国家信息化进程的推进中已经得到了充分的证实;第三,有的领导干部认为政府信息化建设将对自己既有利益格局造成冲击而产生抵触情绪。在政府推行信息化过程中,公务员是其中的关键性因素,他们必须要改变传统的思想观念,真真正正地为人民服务。二是加强组织领导,稳步推进我国政府信息化。首先,在各类因素的影响下,各个地区信息化主管部门多是以各自的“作坊方式”搞信息化建设。常见的如数据库类型、通讯协议、浏览器、服务器等都缺乏统一的标准,所以必须加强部门联通工作,为今后网上交互办公提供方便;其次,建立完善的维护和管理措施,从根本上提升政府信息服务质量。与此同时,要提高政府网站对于信息化的宣传力度,加快政府网站建设工作,政府部门应该积极主动提升自己的形象,从根本上促进自身发展;再次,解决资金问题,以收费和合作的方式偿还早期的投入和解决政府资金的不足。三是加强管理,建立和健全政府信息化法律和法规。第一,在未来的政府信息化进程中,需要为用户提供“在线服务”和“一站式”服务,因此在具体的实施过程中,必须要进行统一的规划,制定出科学的标准,只有采取该项措施,才能获得理想的建设成果;第二,政府信息化对于信息安全的要求是非常严格的,这就要求信息技术方面的整体研发必须由政府自主开发,并开发出安全性较高的信息技术手段;第三,要加紧制定出科学完善的信息法律体系,特别是在电子支付、电子签名以及电子交易上,应制定出完善的法律法规,使信息化进程顺利推进。四是加快政府信息化基础设施建设。目前我国有线电视、计算机、电信在全国范围内尚未实现“三网融合”,应尽快加强数字电视、无线互联网以及呼叫中心数据的联网融合,加快推进政府信息化基础设施工作的推进;从地域上来看,在我国东部地区和沿海地区,政府网站在信息资源和数量上都远远优于我国西部地区与欠发达地区。这就需要有差距的地方奋起直追,努力缩小差距,同时先进地区可以通过结对子的方式支援落后地区;在下一阶段,还要重视公务员的培训工作,给他们灌输新的知识,更新他们的思想观念,这不仅可以提升公务员的整体水平,也是政府信息化建设工作中需要解决的重点问题。
以上是小编为大家分享的关于大数据环境下政府信息化建设的思考的相关内容,更多信息可以关注环球青藤分享更多干货
❹ 大数据、人工智能时代催生了许多新兴行业,在新时代飞速发展的大背景下,个人应该有怎样的思考和选择
不会,大数据人工智能会给会计工作带来新意,更加方便高效,但不可能取代这个专业或是行业。
❺ DT时代,大数据的基本思维主要体现在哪几个方面
1 大数据思维的整体性
随着科技的不断创新,进入大数据时代的同时必然带动着大数据思维由一元思维升级至二元思维,目前根据人类思维的转变模式进行分析,其依然进行至多元思维状态,即追求和谐稳定社会的模式,但是研究大数据思维的发展进程发现,大数据的二元思维模式是一种高效率并适合现今社会发展的思维模式,其追求效率性、相关性、概率性,为创新发展提高了效率。根据当下社会的需求及其社会的快节奏发展,大数据思维已然在各领域发展处于主导地位,由其基本特征层面分析,大数据思维主要特征为整体性,整体性的理论基础在于人类认识世界的能力在自然观中的不断变革而体现,现今社会通过人类对于整体数据的整合及分析能力进行体现,大数据时代,整体性大数据思维模式成为解决问题的首选为必然趋势及结果,其原因在于整体性思维模式能够更加高效的完成复杂的数据统计及分析。以我国人口普查为例,我国近三次人口普查时间间隔为十年,而面对我国庞大的人口数量,大数据思维在数据统计中占领了绝对优势,据悉我国人口普查总投入超过六亿元人民币,以2010年进行的人口普查数据分析,我国耗费了巨大的人力财力以及时间,倘若运用大数据进行人口普查,以其优势进行仅使用百分之一的抽样调查进行数据分析,将大大减少人口普查为政府带来的难题。
2 大数据思维的互联性
“一切皆可量化。”道格拉斯。相对微观层面分析大数据思维特征,较为典型的为切合现今社会及科技发展的量化互联思维,量化为具体或明确目标的一种表述,而互联代表着两种事物间的连接,其作为大数据思维微观层面的一种表达方式,更加说明大数据思维的重要性,知名投资人孙正义对于大数据时代的发展提出:“要么数字化,要么死亡。”直接地表达出大数据思维目前所处的地位,研究发现,数字信息成为时代发展的代表已成为必然趋势,而量化思维为数字化特征带来的必然思维结果,换言之,量化可以解释为共性语言描述和解释世界的一种方式,其体现在于充分运用最新技术手段,对于各个领域进行信息全面定量采集以及信息互通,打通信息间隔阂,并进行全新的信息整合,实现分析实用性及数据科学性,创造更据价值的数据应用和信息资产。目前,大数据的运用不仅体现在网络平台当中,同时在人们的细微生活中、就业环境以及生态保护范围内都做到了广泛适用,gartner公司于2015年运用大数据分析出当下及未来人们就业环境,其调查结果表明,2015年全球范围内数据岗位的需求量高达440万,而2018年全球范围内仅大数据就业背景管理人员的缺乏将高达150万人,案例表明,全球范围的人才紧缺将成为必然趋势并不断增加,该案列清晰的体现出大数据环境下大数据思维的量化互联性,并且为未来就业环境做出了精准的预测。
3 大数据思维的价值性
由大数据思维的本质进行分析,大数据思维具有价值化特征,大数据时代信息的不断整合及分析已然使得信息及数据量化及互联转变为多维度的发展状态,换言之,大数据思维渗透至各个领域及行业的不同维度是大数据发展的初始动机和直接目的,现今社会看待其价值化特征将其价值性总结为大数据思维的本质,同时,万物的量化互联性及其整体性使得其价值性影响了多维度的发展,由此凸显了数据及大数据思维的创造性及重要性。通过对于事实的研究证明,大数据时代背景下,其价值化特征及其价值性的意义正在不断演进并处于不断被挖掘的状态,各个领域大数据思维模式相继被接受和适用也是大数据发展带来的益处之一,随着大数据思维的不断开发和研究,其运用不仅在处理数据分析上实行了高效率,也对于事件及数据的预测上实现了精准并具有概率性的分析结果,google公司于2008年运用大数据思维对于流感爆发地点及人数进行准确预测的经典案列分析,大数据思维对于社会发展体现出其必要的价值性,并且改变了社会对于大数据的看法,可谓大数据的运用成功到达了一个全新的高度,Google公司通过对于数十亿网络搜索请求的数据整合,对世界各地区的流感做出预测,该项目的成功引起了各国对于大数据的使用,同时带动了人们的大数据思维及思考模式,将大数据思维上升至被社会认可的高度。
根据现今社会发展现状分析,客观角度说明我国以基本进入大数据时代,大数据思维的特征已然体现在社会各领域当中,并且伴随着多维度的运用,因此大数据思维全面运用指日可待,高级思维带动我国科技及经济的发展势在必行。随着人工智能的不断推出以及数据分析的不断升级,并且基于大数据思维为社会带来的发展前景研究,大数据思维引领我国科技发展已成为未来的必然趋势。
❻ “大数据”背景下贵州教育的思考
核心提示:教育行业也不例外,2013年对于教育来说是传统育研究走向科学实证的重大机遇。值得我们思考的是,大数据将给教育带来什么?如何通过大数据更好的教育学生?大数据对于教育是福还是祸?
“大数据”是当今最热的概念之一,有人宣称掌握大数据的人可以像上帝一样俯瞰整个世界。进入2012年,大数据一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。
大数据(big data),指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的创新沿着从数据到大数据,再到分析和挖掘,最后是发现和预测的方向发展。随着云时代的来临,大数据也吸引了越来越多的人关注。各行各业更加意识到,谁能率先实现大数据,谁对大数据的挖掘更为深刻,谁就将抢占未来先机。
教育行业也不例外,2013年对于教育来说是传统育研究走向科学实证的重大机遇。值得我们思考的是,大数据将给教育带来什么?如何通过大数据更好的教育学生?大数据对于教育是福还是祸?
翻转课堂、MOOC和微课程是大数据变革教育的第一波浪潮
翻转课堂、MOOC和微课程的出现,改变了传统教育模式,从课堂老师滔滔不绝的讲解,到现在“视频再教育”。学生可以根据个人情况自主制定学习进度,老师可以根据学生在网上做题的情况,有针对性的了解学生学习上遇到的问题。传统课堂不再讲解新课,而成为学生当堂做作业、讲解问题或做实验的场所。
如果说翻转课堂只是一个触角的话,那MOOC的出现就是升华的翻转课堂。“视频再教育”得到进一步的提升,MOOC大规模开放在线课程,面对全球性的MOOC浪潮,中国的大学也开始行动。2013年,上海市率先引入中国式MOOC,推出了“上海高校课程源共享平台”。
MOOC的兴起,使“用视频再造教育”的学习模式迅速推广到高等教育,而且进展到可以通过选修MOOC获得学分、进入正轨教育的程度。清华大学、北京大学也相继开放了在线教育课程。
而微课程是对翻转课堂的回应,是学生自主学习不可或缺的资源。微课程是教学视频浓缩精华的微型课,主要用于学生的前期学习,目前,微课程已开始影响我国中小学信息化教学实践。微课程实践的积累,将导致微课程群的形成,微课程群的应用又会形成新的应用数据,将有利于大数据分析与挖掘、发现与预测的创新应用。可以说,教育领域的改革,首当其冲的就是大数据变革信息化教学。
大数据时代对于教育是福还是祸?
人们还没有来得及搞清楚信息时代是什么,数据时代己悄然来临。在大数据理念面前,大家各抒所见,有些人认为,大数据时代可以让教育者真正读懂学生。
相对于传统数据宏观的教育情况,大数据主要体现在微观层面。大数据使“经验式”教学模式变为“数据服务”教育模式。老师可以根据数据关注每个个体学生的微观表现,通过学生相关数据的分析,有针对性的调整教育方案,从而实现个性化教育。
一些支持大数据教育的人认为,大数据时代的教育将推动传统以“教师为中心”的教学方式向“学生为中心”教学方法的转变,推动“演员型”教师向“导演型”教师转型,从宏观群体走向微观个体,对于教育研究者来说,利用数据可以发现真正的学生。
而另一群人认为大数据是“换汤不换药”,实际上就是用大数据、云计算作为概念来包装以前的东西。虽然在线教育来势汹汹,却有“叫好不叫座”之态。以新东方为例,公开数据显示2012年底新东方在线网站于个人注册用户已逾1000万,而据新东方在线副总裁潘欣介绍,用户愿意付费的额度不高,在2012年新东方付费用户为20万,占比仅为2%。
目前主流的在线教育产品只是将线下的课程录制好搬到线上,这种模式实际上只是线下学习方式的简单复制,这样的学习方法还衍生了一些教育上的新问题:如何保证学习过程不会被中断、怎样确定是学生本人登录学习等。对于在线教育,只有学习主动性和控制力比较好的学生才能利用在线学习取得好的学习效果,而这些方面较弱的人将难以长期坚持,学习效果也可想而知。
❼ 人工智能和大数据哪个发展方向好
我觉得最重要的第一点,首先得问自己的兴趣和能力所在,毕竟无论选择哪个方向,可以支撑我们走下去的,都是兴趣和能力。因此,我们来好好捋一捋这两者的区别和联系。
第一,大数据
大数据是物联网、Web系统和信息系统发展的综合结果,其中物联网的影响最大,所以大数据也可以说是物联网发展的必然结果。大数据相关的技术紧紧围绕数据展开,包括数据的采集、整理、传输、存储、安全、分析、呈现和应用等等。目前,大数据的价值主要体现在分析和应用上,比如大数据场景分析等。
第二,人工智能
人工智能是典型的交叉学科,研究的内容集中在机器学习、自然语言处理、计算机视觉、机器人学、自动推理和知识表示等六大方向,目前机器学习的应用范围还是比较广泛的,比如自动驾驶、智慧医疗等领域都有广泛的应用。人工智能的核心在于“思考”和“决策”,如何进行合理的思考和合理的行动是目前人工智能研究的主流方向。
可见,相比大数据某,人工智能涉及的领域更加高深和高端,因此知识含量也更高,学习起来也需要付出更多,对个人的数理和逻辑能力要求很高,不过两者也是有联系的。
一方面,人工智能需要大量的数据作为“思考”和“决策”的基础,另一方面大数据也需要人工智能技术进行数据价值化操作,比如机器学习就是数据分析的常用方式。在大数据价值的两个主要体现当中,数据应用的主要渠道之一就是智能体(人工智能产品),为智能体提供的数据量越大,智能体运行的效果就会越好,因为智能体通常需要大量的数据进行“训练”和“验证”,从而保障运行的可靠性和稳定性。
所以啊,没有必要太过完全区分开两者,还是打好基础,一步一个脚印学起来,唯有最佳之选。