❶ 大数据和云计算方向前景怎么样
大数据和云计算都是为了发展趋势,前景看好。参考前瞻产业研内究院《中国大数据容产业发展前景与投资战略规划分析报告》显示,目前我国大数据产业规模可达1500亿元,未来5年将进入“加速期”,到2020年将达到8000亿元的规模,实现几何级增长。
从产业细分看,大数据产业分为基础层、软件层和应用层三大块,但现在我国大数据应用层仅占10%的比例,明显是个“短板”。现在,我国众多家电、商业、旅游企业都高度重视大数据的搜集和开发应用,对于传统企业来说,大数据是传统产业向“互联网+”改造的必经之路,可是传统企业如何将业务、产品、管理等进行数据化改造,成为企业关注的焦点。
❷ 什么叫大数据,与云计算有何关系。
1,大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产
2,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。
他俩之间的关系你可以这样来理解,云计算技术就是一个容器,大数据正是存放在这个容器中的水,大数据是要依靠云计算技术来进行存储和计算的。
大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
云计算的关键词在于“整合”,无论你是通过现在已经很成熟的传统的虚拟机切分型技术,还是通过google后来所使用的海量节点聚合型技术,他都是通过将海量的服务器资源通过网络进行整合,调度分配给用户,从而解决用户因为存储计算资源不足所带来的问题。
大数据正是因为数据的爆发式增长带来的一个新的课题内容,如何存储如今互联网时代所产生的海量数据,如何有效的利用分析这些数据等等。
大数据的趋势:
趋势一:数据的资源化
何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。
趋势二:与云计算的深度结合
大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
趋势三:科学理论的突破
随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。
❸ 云计算与大数据到底有怎样的关系呢
随着云计算的落地,今年云计算将会快速增长并渗透垂直行业内。在发布了2013年云计算趋势观察之后,Ovum软件公司高级分析师Lachal表示:“云计算供应商和企业在云计算方面都下了很大的功夫,2013年我们将会看到他们在云计算方面的初步成功,不仅仅是自身的成功,对于整个生态系统也会有促进的作用。”事实上,“公有云、私有云和混合云”不同形态的云计算在不断地发展和成熟,越来越多企业级的云计算服务被推出市场。尽管这样,Lachal认为这只是云计算提供商和企业的初期。“就目前来看,云计算还只是处在青春期,要想成熟进入成年期至少还需要五年的时间。” Lachal补充道。今年,我们还将会看到云计算生态系统的崛起,公有云不仅可以作为技术交互的平台,还是云服务提供商和消费者之间的生态纽扣将二者很好的连接在一起。在瞬息万变的社交网络和移动互联网的时代,云计算为整个互联网生态系统的发展提供了新加速途径。很多行业受益于“数据中心作为一个枢纽”,越来越多的以云计算为中心的生态系统合作伙伴集中在一个关键的数据中心,如金融交易、网页和在线服务或是媒体内容的企业。众所周知,这些企业有大量的数据需要进行处理和管理。随着移动智能设备的普及,云计算服务和云应用在云平台的支撑下,让这庞大的数据得以保存和处理,数据的价值不在于多,而是如何挖掘到有价值的数据,这需要借助云服务和云应用的能力了。这也是业界将云计算和大数据相提并论的原因所在,到底云计算与大数据是怎么样的关系?云计算已然走下神坛开始步入应用阶段,而大数据的催生反过来了体现了云计算的价值所在。关注IT的朋友想必已经注意到业界对于新趋势的关注已由原来的云计算转移到大数据上,越来越多的企业开始推广大数据相关的服务和产品,越来越多的企业将企业数据作为企业资产进行管理和变现,已经开始从数据抽象、数据共享和数据估值开始启动大数据战略。对于大数据趋势并不像云计算那样主要集中在概念层面的讨论,主要是在技术层面的研究。企业视大数据为企业的生命、企业的新竞争力,要想在同类行业中脱颖而出赢得市场,大数据的支持是必不可少的,所以企业纷纷制定大数据战略,无论是互联网企业还是传统企业,都在大数据时代不甘示弱,而大数据时代的特性注定了它与云计算的不解之缘。大数据推动云计算的落地,云计算促进大数据的应用。云计算大数据
❹ 什么叫大数据 与云计算有何关系
如今,两种主流技术已成为领域关注的焦点-大数据和云计算。根本不同的是,大数据只涉及处理海量数据,而云计算则涉及基础架构。但是,大数据和云技术提供的简化功能是其被大量企业采用的主要原因。例如,亚马逊的“ Elastic Map Rece”演示了如何利用Cloud Elastic Computes的功能进行大数据处理。
两者的结合为组织带来了有益的结果。更不用说,这两种技术都处于发展阶段,但是它们的结合在大数据分析中利用了可扩展且具有成本效益的解决方案。
那么,我们可以说大数据与云计算完美结合吗?好吧,有数据点支持它。除此之外,还需要处理一些实时挑战。
大数据与云计算的关系
大数据和云计算这两种技术本身都是有价值的。 此外,许多企业的目标是将两种技术结合起来以获取更多的商业利益。两种技术都旨在提高公司的收入,同时降低投资成本。尽管Cloud管理本地软件,但大数据有助于业务决策。
让我们从这两种技术的基本概述开始!
大数据与云计算
大数据处理大量的结构化,半结构化或非结构化数据,以进行存储和处理以进行数据分析。大数据有五个方面,通过5V来描述
数量–数据量
种类–不同类型的数据
速度–系统中的数据流率
价值 –基于其中包含的信息的数据价值
准确性 –数据保密性和可用性
云计算以按需付费的模式向用户提供服务。云提供商提供三种主要服务,这些服务概述如下:
基础架构即服务(IAAS)
在这里,服务提供商将提供整个基础架构以及与维护相关的任务。
平台即服务(PAAS)
在此服务中,Cloud提供程序提供了诸如对象存储,运行时,排队,数据库等资源。但是,与配置和实现相关的任务的责任取决于使用者。
软件即服务(SAAS)
此服务是最便捷的服务,它提供所有必要的设置和基础结构,并为平台和基础结构提供IaaS。
大数据与云计算的关系模型云计算在大数据中的作用
大数据和云计算的关系可以根据服务类型进行分类:
IAAS在公共云中
IaaS是一种经济高效的解决方案,利用此云服务,大数据服务使人们能够访问无限的存储和计算能力。对于云提供商承担所有管理基础硬件费用的企业而言,这是一种非常经济高效的解决方案。
私有云中的PAAS
PaaS供应商将大数据技术纳入其提供的服务。因此,它们消除了处理管理单个软件和硬件元素的复杂性的需求,而这在处理TB级数据时是一个真正的问题。
混合云中的SAAS
如今,分析社交媒体数据已成为公司进行业务分析的基本参数。在这种情况下,SaaS供应商提供了进行分析的出色平台。
大数据与云计算有何关系?
因此,从以上描述中,我们可以看到,Cloud通过可伸缩且灵活的自助服务应用程序抽象了挑战和复杂性,从而启用了“即服务”模式。从最终用户提取海量数据的分布式处理时,大数据需求是相同的。
云中的大数据分析有多个好处。
改进分析
随着云技术的进步,大数据分析变得更加完善,从而带来了更好的结果。因此,公司倾向于在云中执行大数据分析。此外,云有助于整合来自众多来源的数据。
简化的基础架构
大数据分析是基础架构上一项艰巨的艰巨工作,因为数据量大,速度和传统基础架构通常无法跟上的类型。由于云计算提供了灵活的基础架构,我们可以根据当时的需求进行扩展,因此管理工作负载很容易。
降低成本
大数据和云技术都通过减少所有权来为组织创造价值。云的按用户付费模型将CAPEX转换为OPEX。另一方面,Apache降低了大数据的许可成本,该成本应该花费数百万美元来构建和购买。云使客户无需大规模的大数据资源即可进行大数据处理。因此,大数据和云技术都在降低企业成本并为企业带来价值。
安全与隐私
数据安全性和隐私性是处理企业数据时的两个主要问题。此外,当您的应用程序由于其开放的环境和有限的用户控制安全性而托管在Cloud平台上时,这成为主要的问题。另一方面,像Hadoop这样的大数据解决方案是一个开源应用程序,它使用了大量的第三方服务和基础架构。因此,如今,系统集成商引入了具有弹性和可扩展性的私有云解决方案。此外,它还利用了可扩展的分布式处理。
除此之外,云数据是在通常称为云存储服务器的中央位置存储和处理的。服务提供商和客户将与之一起签署服务水平协议(SLA),以获得他们之间的信任。如果需要,提供商还可以利用所需的高级安全控制级别。这可确保涵盖以下问题的云计算中大数据的安全性:
保护大数据免受高级威胁。
云服务提供商如何维护存储和数据。
有一些与服务级别协议相关的规则可以保护
数据
容量
可扩展性
安全
隐私
数据存储的可用性和数据增长
另一方面,在许多组织中,大数据分析被用来检测和预防高级威胁和恶意黑客。
虚拟化
基础架构在支持任何应用程序中都起着至关重要的作用。虚拟化技术是大数据的理想平台。像Hadoop这样的虚拟化大数据应用程序具有多种优势,这些优势在物理基础架构上是无法访问的,但它简化了大数据管理。大数据和云计算指出了各种技术和趋势的融合,这使IT基础架构和相关应用程序更加动态,更具消耗性和模块化。因此,大数据和云计算项目严重依赖虚拟化
❺ 大数据与云计算就业前景
从当前互联网领域的发展基本面来看,大数据和云计算都有比较广阔的发展内前景,一方面产业互联网容未来将为大数据和云计算提供巨大的发展空间,另一方面云计算和大数据本身也能够带动一系列新技术和新模式的创新。
由于大数据是物联网发展的三个基础因素之一,所以大数据的发展对于人工智能技术的发展来说,也具有重要的意义。当前科技领域和行业领域对于人工智能的呼声都比较高,所以在人工智能领域的推动下,大数据也会得到更多的重视。
相对于大数据来说,云计算技术的重要性已经得到了一定程度的体现,随着云计算逐渐进入到PaaS时代和SaaS时代,全栈云和智能云将进一步提升云计算的服务效率。在目前工业互联网快速发展的推动下,云计算对于行业领域的重要性将得到逐渐的体现,所以未来云计算的发展空间会逐渐扩大。
❻ 云计算与大数据哪个发展前景更好
技术发展是产业发展走向繁荣的前提
无论是计算机行业,还是汽车领域,技术形态的成熟是一个必然的要素。如果某个所谓的时代在技术上、硬件上没有达到产业的要求,数据库和平台都是非完整和非稳定的,时代的产业基础也就十分薄弱。从产业的政策角度分析,当技术累积到一定层次,产业政策的出台是必然的。
为了激活云计算的发展,国务院在2015年就出台了《关于促进云计算创新发展培育信息产业新业态的意见》、《云计算白皮书2016》等,这些政策的出现并非偶然,在其背后有很多云计算服务商多年默默的技术耕耘。
技术和政策的形态达到一定的地步,真正的产业化和市场化是否也已经达到?等待入局者必须考虑几个重要因素:一、目的是什么(为了降低成本、提高效率,还是在渠道上更接近用户);二、企业是否愿意使用(产品同质化严重,如何体现差异化);三、是否有助于提高社会福利(消费者福利、管理效率)。
如果这些问题得到肯定的答案,云计算与时代的发展需求相契合,真正的时代大门就会开启。
云计算
大数据的运用将更加追求精准化和多维度
大数据本身除了要有数据、采集、汇聚一定量的数据之外,更重要的是数据的处理、挖掘、分析、可视化、应用这样一整套的过程。
关于大数据的话题,基本围绕三个问题展开:一是数据从哪里来,二是数据如何进行分析,三是数据如何进行商品化。任何大数据都是以应用为主的,在未来,通过多维度、多复合的大数据的精准挖掘,最终提供出优质的商务解决方案才是最关键的。
数据的三个来源分别是政府、企业行业和个人消费。政府数据做了授权,但由于法律和其他方面的不健全,政府数据被滥用。消费者数据来源于电信、金融或类似BAT大企业,流量入口处的数据将被自动抓取,数据提供商可以提供所有维度的数据,但每一个都是局部。
数据优化商在大数据产业链里要想长久发展,必须精通大数据的模型、算法以及数据特征,同时对行业及生态要有明显的敏感性。而算法提供商如果仅仅依赖单纯算法,未来将成为成长软肋。应用提供商最贴近客户、最熟悉客户需求,同时做的是最后的数据整合,在产业链上可能发展空间更大。
IDC行业未来具有很大的发展潜力
中国具有高达6.3亿的大规模网民群体,目前国内仅有3万个机柜,对比美国的3亿群体2.4万个机柜可以看出,中国的数据市场规模还远未达到平衡点,未来将保持高速增长的态势。另一个方面,由于企业客户运营模式的改革,企业的云化增加了对大数据及专业数据中心的需求。
未来云计算产业和大数据产业将呈现规模化发展趋势,市场红利可观,创新、服务、合作、技术将推动互联网科技企业走得更高、更远。
❼ 云计算与大数据结合的优势有哪些
云计算的目的是通过资源共享的方式更好地调用、扩展和管理计算和存储等方面的资源和回能力以降低企业的答IT成本;大数据的目的是充分挖掘海量数据中的信息,以发现数据中的价值。
云计算的处理对象是IT 资源、能力和应用;大数据的处理对象是数据。
云计算节省了IT资源成本;大数据能发现数据中的价值,从而带来收益。
云计算与大数据平台可以建立统一共享的基础设施资源池,实现针对不同业务应用系统的资源统一部署和协同调度,达到资源的集约利用的目的。同时通过相互借鉴彼此的技术思路,云计算与大数据实现在提供服务能力方面的融合。
❽ 阿里怎样与地方政府合作云计算与大数据产业
该怎么交怎么交啊,有多少收入算多少所得税,如果存在税务特殊规定的除外
❾ 云计算和大数据方向是什么发展前景如何
中国云计算大数据当前呈现出以下三个方面的典型特点:1.2010年已经从概念宣传阶段,进入实质发展阶段;2.正处于私有云的研发试验阶段,计划向公有云转变;3.中小企业信息化是公有云发展的核心驱动力。
2009年以来,我国云计算开始进入实质性发展的阶段,各方力量在云计算的发展过程中都起到了推动作用,这些推动者包括以IBM、EMC、Intel等为代表的跨国设备制造商,推销解决方案,拓展和占领市场;上海、北京、天津、无锡、东营等为代表的地方政府建设了一些云计算中心,为拉动投资需求,建立政府公务云及面向中小企业的公有云;以新浪、腾讯、阿里巴巴、世纪互联等为代表的国内互联网企业,对内做IT设施的改造提高效率,对外提供服务以降低成本拓展业务范围;以中国移动、中国电信为代表的传统电信运营商,短期目标是为运营支撑系统搭建私有云,整合内部资源,节能降耗,实现利旧和转型;另外还有以金蝶、金算盘、百会等为代表的软件公司,这些公司在云计算的概念出现以前已经开始提供SaaS业务。
云计算是一种基于互联网提供服务的业务模式,互联网发展水平和网络质量对于云计算业务的发展至关重要;同时云计算又代表着从提供产品到提供服务的产业模式的转变,不仅需要用户观念的转变,更需要提供商与用户之间建立基于法律制度保障和相互信任基础上的合作关系。从这两点上来说,云计算在中国的发展还面临着很大的挑战。
❿ 云计算,大数据之后发展什么产业
2006年谷歌的CEO埃里克•施密特在搜索引擎战略大会上第一次向全世界正式提出“云计算”这一全新的IT技术概念。至今七八个年头过去了,谷歌是一家互联网公司,不是传统意义上的硬件或软件公司,他向世人提供的是基于云计算平台的网络服务,而不是帮助客户搭建云计算平台。于是我们看到,这几年在市场上把云计算这个口号喊得最响亮的却是一些传统的硬件和软件公司。这些传统的IT公司,在很长的时期里是不可能放弃传统的硬件和软件业务,出于自身的利益考虑,他们向云计算的概念里植入了大量有利于维持传统业务的思想,而这些思想有可能导致云计算偏离本来的发展方向。这也是造成当前云计算这一概念被世人所误解甚至嫌弃的原因。
虽然饱受争议,但经过这几年的发展,云计算已经成为目前最主流的IT系统架构模式。大部分互联网企业都搭建了基于云计算的业务平台,绝大多数跨国企业都已经拥有或正在建设自己的云计算平台。
最近两年云计算已经逐渐回归理性,产业界和学术界都在重新思考和调研她的技术形态和商业形态,跟云计算关系非常密切的大数据时代的到来,使得人们有机会可以更加理性和全面的眼光看待云计算。
大数据是人类科学发现方法之“第四范式”中最为重要的科技手段。大数据从出现伊始就有明确的技术路线和应用方向,所以比较容易被人们理解和接受。因为大数据往往都能和现有的业务系统相关联,直接提升业务效率、提高企业效益,所以大数据成为了目前最热门的关键词之一。数据仓库、数据安全、数据分析、数据挖掘等围绕大数据的商业价值的利用逐渐成为整个市场争相追捧的利润焦点。