① 大数据告诉你,金融,管理咨询公司都在招些什么人
我待你柔情,时光也因此隽永美好
② 大数据对金融企业有什么帮助
善林金融指出,大数据金融有着传统金融难以比拟的优势,企业通过自己的征信系统,实现信用管理的创新,有效降低坏账率,扩大服务范围,增加对小微企业的融资比例,降低了运营成本和服务成本,可以实现规模经济。大数据还能够通过海量数据的核查和评定,增加风险的可控行和管理力度,及时发现并解决可能出现的风险点,对于风险发生的规律性有精准的把握,将推动金融机构对更深入和透彻的数据的分析需求。另外,大数据金融扩展了企业的海量数据,让企业更贴近消费者,了解消费者的真正需求,进一步增加客户黏性。
③ 金融大数据应用面临哪些风险
1.金融科技巨头可能产生数据垄断
一些金融科技巨头凭借其在互联网领域的固有优势,掌握了大量数据,客观上可能会产生数据寡头的现象,可能会带来数据垄断。一些机构掌握了核心的信用数据资源,由于缺乏分享的激励机制,导致与征信的共享理念存在冲突。
2.存在数据孤岛现象,数据融合困难
政府和企业都面临数据孤岛难题。大数据时代,数据已经成为核心资源,企业出于保护商业机密或者节约数据整理成本的考虑而不愿意共享自身数据,一些政府部门也缺乏数据公开的动力。数据孤岛现象的存在,将导致大数据信用评估模型采用的数据维度和算法的不同,大数据征信模型的公信力和可比性容易遭到质疑。
3.数据安全和个人隐私保护难度升级
目前,大数据的获取大致有四种方法:自有平台积累、通过交易或合作获取、通过技术手段获取、用户自己提交的数据等。但是由于相关的法律法规体系尚不健全,数据交易存在许多不规范的地方,甚至出现数据非法交易和盗取信息的现象。大数据来源复杂多样加大了用户隐私泄露的风险,其一,我国金融大数据行业的发展乃至Fintech行业的发展,在很大程度上得益于互联网应用场景的发展,而大数据从互联网应用场景向金融领域的转移往往发生在一些金融科技企业的集团内部,这个过程缺乏监管和规范,可能会侵犯到用户的知情权、选择权和隐私权。其二,应用数据存在多重交易和多方接入的可能性,隐私数据保护的边界不清晰;其三,技术手段的加入,加大了信息获取的隐蔽性,一旦出现隐私泄露纠纷,用户将面临取证难、诉讼难的问题;其四,大数据采集数据的标准不一,用户的知情权、隐私权可能受到侵犯。可见,在大数据环境下,个人数据应用的隐私保护是一个复杂的消费者权益保护问题,涉及到道德、法律、技术等诸多领域。
④ 大数据如何改变银行,金融和信贷
作为银行的一项主要资产业务,贷款资产的运动是一种以“两权分离、按期偿还”为本质特征的特殊价值运动。在现实经济活动中,银行的信贷活动,会受事先无法预料的不确定性因素影响,例如使银行贷款资金有可能遭受损失事件发生。主要表现为贷款到期不能按时收回和贷款的贬值等,这样就产生了贷款风险。从目前国有商业银行贷款资产质量的现状看,形势较为严峻。
国有商业银行信贷风险分析
政府行政干预带来的风险。按照经济发展的客观要求,国有银行是资金配置的主体,政府职能只限于宏观调控。然而在现实中,作为国有商业银行,虽然在人事、行政、业务上不受政府直接管控,但并不等于不受政府影响。作为资金配置的主体,政府并未从实际运作的干预中退出,中心地位并未淡化,往往造成部份项目投资效益不高,形成贷款沉淀。
社会保障机制滞后带来的风险。由于企业破产失业救济制度不完善,国有银行贷款风险无法直接分散和转移。企业与社会的问题没有解决,企业把生产所需资金缺口留给银行贷款解决,形成贷款风险压力;企业保险制度不健全,使银行无法保全贷款资产的安全性,增加了损失的概率。
法制不健全带来的风险。尽管我国陆续出台了银行法、票据法等许多法律,但是这些法律大多内容比较简单,有些内容有待于重新修订,并且有些法律与国家的某些政策相悖,银行在保全债权方面将会遇到较大的阻力,加大了银行的信贷经营风险。
缺乏科学经营管理带来的风险。国有商业银行缺乏科学规范的经营管理方式主要表现在:在经营上把效益性放在首位,而忽视安全隐患;没有建立起完善的责权对等的管理机制,一旦贷款出现问题,很难分清责任,更谈不上追究责任。
借款人(企业)还贷意愿不确定带来的风险。借款人(企业)还贷意愿与其(法定代表)的信用相关,还贷能力强的借款人(企业)还贷意愿不一定强;还贷能力弱的借款人(企业)还贷意愿不一定差。并且,信用度很难进行比较准确的考查、判断。所以,借款人还贷意愿存在很大的不确定性,这种不确定性必然带来一定的风险。
国有商业银行信贷风险的控制对策
为有效防止和化解国有商业银行信贷风险,避免由此带来的金融震荡和经济风险,通过上述对我国商业银行目前面临的信贷风险原因的分析,我们可以从如下几个方面着手治理商业银行的信贷风险。
进一步加强政府监督职能。政企不分一直严重困扰我国企业改革和发展。我国信用的深层次问题很大程度上表现为政府行为和地方保护主义。由于政府尚未完成由市场的参与者向市场的管理者的转变,为了政绩需要而急功近利,期望短期内地方经济有较大起色,过分干预银行贷款,削弱了市场功能作用和市场法则权威。因此,必须重新界定政府职能、规范政府行为。政府职能是弥补市场缺陷、维护社会公平,着力为企业经营提供必要的经济环境,同时支持并配合银行防范和制止企业逃废债务,确保金融资产的安全运行。
建立健全社会保障体系。形成全社会信用是提高银行资产质量的重要保证。恶意逃避银行债务、恶意欠款的单位必须受经济和法律制裁。作为政府部门,央行应对企业改制中兼并、重组、破产等跟踪监督,协助金融机构依法维护金融债权;应健全企业信息披露制度,解决银、企信息不对称问题:严格规范企业会计信息和信息处理标准化,并提高信息公开程度,以降低银行系统风险。
⑤ 软件开发 大数据分析 互联网金融哪个好
软件开发和互联网金融都是相对饱和的了。
而随着国家对大数据的重视,大数据分析方面的内需求容日益凸显。
整体就业市场,大数据分析师处于巨大的缺口,未来各行各业对于大数据的运用必然常规化。
--广东韵为大数据分析---
⑥ 大数据对互联网金融的发展有什么作用
自互联网金融被广而告之以后,大家就一直在被灌输大数据在互联网金融发展中的作用巨大,甚至最近更有专家说大数据是互联网金融发展的加速器。但是似乎并没有一个系统的说法,大数据具体有什么用,我们只知道互联网金融确实是其中的获益者之一,下面且听听通金魔方分析师的见解。
我们首先从互联网金融的含义生对大数据有个简单的了解。正如互联网金融之父谢平所言,所谓的互联网金融,并非是简单的将互联网和金融进行叠加。
正确的理解应该是基于互联网应用的特殊技术,推动了全新的商业模式,产品服务,对金融领域产生的颠覆性变革。在这其中,大数据则充当了很重要的推手。接下来我们来看一下大数据在互联网金融发展中的作用体现。
精准的用户分析
大数据的首要作用就是在于它能够对用户进行准确的分析,然后帮助互联网金融找到合适的目标用户,进而实现精准营销。
在目前的互联网金融领域,很多新兴的企业,大多以做贷款或者金融衍生产品为主。其主打的卖点主要在于较高的投资收益或者较低的手续费优惠。但是在竞争日益加剧的市场环境下,由于不能保证资金流稳定,或者客户粘性而倒闭的企业随处可见。
据相关数据显示,截止2013年底,中国境内共有450家P2P公司,其中有的甚至在创立几天内即宣布倒闭。在这样的基础之上,实现精准营销才是这些企业唯一的出路,这也正是大数据的作用所在。
虽然互联网金融的发展仍然处于起步阶段,但是却已经有了相当丰富的成熟案例。比如通过定向技术查看用户近期浏览过的理财网站,通过关键词,浏览数据建立用户模型,从而实现优化产品的实时推荐频度,以便最大限度的锁定有效用户等。
帮助金融企业风险防控
除了以上的首要作用之外,大数据还能够帮助金融企业加强风险的可控性。在精细化管理方面助推了互联网金融,尤其是信贷服务的发展。
比如通过对大量网络交易及行为数据的分析,可以为用户的信用评估提供可靠的依据。这些信用评估可以帮助金融企业在用户的还款意愿和能力方面做出较为准确的结论,以便决定是否继续为该用户提供快速授信或者现金分期等服务。从而最大限度的降低金融企业的业务风险。
当然,我们对于个人用户或者企业用户信用好坏的评定取决于诸多因素,但是我们也可以从这诸多因素中找到相应的数据。比如我们要寻找这个用户的整体收入,固定资产,性格特点甚至是行为习惯等,那么我们就可以从网上银行,电商,社交网络,甚至招聘和婚介网站等地方获取。
大数据的作用在这里面得以体现的最关键的一点就是,这些所谓的数据往往都是以动态变量的形式存在的,而我们要想以此为依据获得准确的信用评级,则更要倚重于大数据的持续分析功能。
通过上面的分析,我们也不得不承认大数据在互联网金融发展中作用巨大,只不过在现在这个互联网金融的起步阶段,大数据作用的发掘仍不算完整,我们只能一步一步的在不断的发展中发现它的好。
⑦ 常用的互联网金融大数据风控方式有哪些
1:验证借款人信息
验证借款人身份的五因素认证是姓名、手机号、身份证号、银行卡号、家庭地址。企业可以通过借助银联数据来验证银行卡号和姓名。
其他的验证客户的方式包括让客户出示其他银行的信用卡及刷卡记录,或者验证客户的学历证书和身份认证。
2:大数据分析提交的信息
大部分的贷款申请都从线下移到了线上,特别是在互联网金融领域,消费贷一般都是以线上申请为主的。
线上申请时,申请人会按照贷款公司的要求填写多维度信息例如户籍地址,居住地址,工作单位,单位电话,单位名称等。如果是欺诈用户,其填写的信息往往会出现一些规律,企业可根据异常填写记录来识别欺诈。例如填写不同城市居住小区名字相同、填写的不同城市,不同单位的电话相同、不同单位的地址街道相同、单位名称相同、甚至居住的楼层和号码都相同。
3:分析客户的消费信息
从客户的电商消费记录、旅游消费记录、以及加油消费记录都可以作为评估其信用的依据。有的互联金融公司专门从事个人电商消费数据分析,只要客户授权其登陆电商网站,其可以借助于工具将客户历史消费数据全部抓取并进行汇总和评分。
4:参考客户的社会属性和行为进行评估
参考过去互联网金融风控的经验发现,拥有伴侣和子女的借款人,其贷款违约率较低;年龄大的人比年龄低的人贷款违约率要高。经常不交公共事业费和物业费的人,其贷款违约率较高。经常换工作,收入不稳定的人贷款违约率较高。经常参加社会公益活动的人,成为各种组织会员的人,其贷款违约率低。经常更换手机号码的人贷款违约率比一直使用一个电话号码的人高很多。
5:调查客户是否进入黑名单
市场上有近百家的公司从事个人征信相关工作,其主要的商业模式是反欺诈识别,灰名单识别,以及客户征信评分。反欺诈识别中,重要的一个参考就是黑名单,市场上领先的大数据风控公司拥有将近1000万左右的黑名单,大部分黑名单是过去十多年积累下来的老赖名单,真正有价值的黑名单在两百万左右。
涉毒涉赌以及涉嫌治安处罚的人,其信用情况不是太好,特别是涉赌和涉毒人员,这些人是高风险人群,一旦获得贷款,其贷款用途不可控,贷款有可能不会得到偿还。
⑧ 大三了,金融专业,我想往大数据方面发展,但对自己特别没有信心,我总觉得目前的处境很尴尬啊!!求指点
我是金融专业,之抄后连读经济学,现在工作两年。
金融和大数据都是很热门的大方向,个人感觉只要坚持选择的方向,日后必有所成。
金融岗位大体分两种,一种是销售,一种是操盘,哪个岗位都不那么容易也从不简单。
就事论事到工作上,总应该是扬长避短的。你对自己哪个方向有信心和兴趣,就在那里努力(如果都没有信心就先找到再说,磨刀不误砍柴工嘛)。
生活不需要这么纠结的,生命也没这么纠结的。日子是干出来的又不是想出来的。
撸主保重
⑨ 有没有朋友知道金融大数据工程师是做什么的,今天听朋友说起,但是说的不是很清楚,有点感兴趣想了解一下
上次抄在云掌财经下面袭的相关阅读看到的.不同公司对数据分析师的职位划分稍有不同。在一些中小型企业,在没有成立独立的数据中心前,数据分析的相关职位往往是在市场部、运营部的管辖之下,人数通常在2-4人不等。对于一些大型企业,有独立的数据分析部门,团队成员也在数十人到百余人不等。对于职位头衔,有的按行政级别划分,如专员、主管、经理、总监等;也有的按专业水平划分,如助理、高级、资深、专家等。数据分析职位整体上分为两大类:1、数据分析师:专业能力成长路径:助理数据分析师-数据分析师-资深数据分析师-高级数据分析师行政职位晋升路径:数据分析专员-数据分析主管-数据分析经理-数据分析总监主要专业技能要求:数据库知识(SQL)、基本的统计分析知识、熟练掌握Excel,了解SPSS/SAS,良好的PPT展示能力。2、数据分析工程师:算法工程师、建模工程师。